

Professional DotNetNuke™ ASP.NET Portals

Shaun Walker, Patrick J. Santry, Joe Brinkman, Daniel Caron,
Scott McCulloch, Scott Willhite, and Bruce Hopkins

01_595636 ffirs.qxd 5/10/05 10:02 PM Page i

01_595636 ffirs.qxd 5/10/05 10:02 PM Page iv

Professional DotNetNuke™ ASP.NET Portals

Shaun Walker, Patrick J. Santry, Joe Brinkman, Daniel Caron,
Scott McCulloch, Scott Willhite, and Bruce Hopkins

01_595636 ffirs.qxd 5/10/05 10:02 PM Page i

Professional DotNetNuke™ ASP.NET Portals
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN 13: 978-0-7645-9563-9
ISBN 10: 0-7645-9563-6

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/SV/QV/QV/IN

Library of Congress Cataloging-in-Publication Data:

Professional DotNetNuke ASP.Net portals / Shaun Walker ... [et al.].
p. cm.

Includes index.
ISBN 0-7645-9563-6 (paper/website)
1. Active server pages. 2. Web portals—Design. 3. Microsoft

.NET. I. Walker, Shaun, 1971- .
TK5105.8885.A26P78953 2005
005.2'76—dc22

2005006846

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, elec-
tronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976
United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment
of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, e-mail: brandreview@wiley.com or
online at wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESEN-
TATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS
WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF
FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMO-
TIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY
SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUB-
LISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGA-
NIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER,
READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DIS-
APPEARED BETWEEN THEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. DotNetNuke is a trademark of Perpetual Motion Interactive Systems,
Inc. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any
product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

01_595636 ffirs.qxd 5/10/05 10:02 PM Page ii

Credits
Acquisitions Editor
Jim Minatel

Development Editor
Kenyon Brown

Technical Editor
Bruce Hopkins

Production Editor
Angela Smith

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Graphics and Production Specialists
Karl Brandt
Carrie A. Foster

Quality Control Technician
David Faust

Permissions Editor
Laura Moss

Proofreading and Indexing
TECHBOOKS Production Services

01_595636 ffirs.qxd 5/10/05 10:02 PM Page iii

01_595636 ffirs.qxd 5/10/05 10:02 PM Page iv

About the Authors
Shaun Walker is founder and president of Perpetual Motion Interactive Systems Inc., a solutions com-
pany specializing in Microsoft enterprise technologies. Shaun has 15 years professional experience in
architecting and implementing large scale IT solutions for private and public organizations. Shaun is
responsible for the creation and management of DotNetNuke, an open source content management sys-
tem written for the Microsoft ASP.NET platform. Based on his significant community contributions he
was recently recognized as a Microsoft Most Valuable Professional (MVP) in 2004. In addition, he was
recently added as a featured speaker to the MSDN Canada Speakers Bureau, which allows him to evan-
gelize DotNetNuke to User Groups across Canada. Shaun resides in British Columbia, Canada with his
wife and two children.

Patrick Santry, Microsoft MVP (ASP/ASP.NET) holds MCSE, MCSA, MCP+SB, i-Net+, A+, and
Certified Internet Webmaster certifications. He has authored and co-authored several books and maga-
zine articles on Microsoft and Internet technologies. Patrick is frequent presenter on web technologies,
having presented at several events including the Exchange 2000 launch, DevDays 2004 in Pittsburgh,
Pennsylvania, and to area .NET SIGs on DotNetNuke module development. In addition, Patrick owns
and maintains http://www.WWWCoder.com, a popular site for news, tutorials, and information for the
web development community. Patrick resides in Girard, Pennsylvania, USA with his wife Karyn, and
their four children, Katie, Karleigh, P.J., and Danny.

Joe Brinkman, formerly the founder and President of TAG Software Inc, is the Chief Technology Officer
for DataSource Inc. (http://www.datasourceinc.com), a J2EE development company focused on sim-
plifying and automating development of N-Tier applications with Java. With more than 22 years of IT
experience and a Computer Science degree from the United States Naval Academy, he brings a broad
range of experience and expertise in a variety of software and hardware architectures. Having worked
with DotNetNuke since February 2003, and a founding Core Team member, Joe currently serves as a
member of the DotNetNuke Board of Directors, a Lead Architect and Security Specialist.

Dan Caron is a Lead Application Designer & Developer with MassMutual Financial Group, a Fortune
500 global, diversified financial services organization. With MassMutual, Dan designs technical solu-
tions for financial web applications using Microsoft and Java technologies. For more than 10 years, Dan
has been designing and developing applications with various programming technologies including
Microsoft ASP.NET, XML/XSL, SQL, Java, and JSP. He has been a major contributor to the DotNetNuke
open-source portal project since the Core Team was founded in 2003. Some of Dan’s noteworthy contri-
butions include the exception handling framework, event Logging Provider and the Scheduler. Dan con-
tinues to contribute his talent to the project as a Lead Architect, Core Developer, and member of the
Board of Directors. Dan lives in Connecticut, USA with his wife and two children.

Scott McCulloch works as an Application Developer for the Computer Science Corporation, Australia.
At 26 years of age, Scott holds a Bachelor and Masters Degree in Computer Science, as well as the three
major Microsoft Certifications (MCSD, MCDBA, MCSE). Scott has been part of the DotNetNuke commu-
nity since the project began (late December, 2002). Today, his role within the DotNetNuke team is con-
tributing as an Architect and Core Developer. He currently resides in Wollongong, Australia with his
fiancée, Lenise.

Scott Willhite is an accomplished business and technology professional turned family man. He happily
spends his days working closely with his wife on their personal and community oriented business pur-
suits. Scott’s technology pedigree is distinguished, including Bachelor of Science in Computer Science

01_595636 ffirs.qxd 5/10/05 10:02 PM Page v

and MBA in Information Systems Management degrees from Baylor University. Scott has worked as
Senior Manager and Technical Architect for Andersen Consulting (now Accenture), Associate Director
for EnForm Ventures, acting CTO and VP of Technology for 10x Labs, and Program Director for Safeco’s
Office of the CIO. He’s architected, developed, and managed systems built on technologies ranging from
COBOL to Java and .NET, solving all kinds of real-world business problems without a certification of
any kind. Ever the “Don Quixote” type, Scott’s currently tilting at the windmills of open-source and
committed to building DotNetNuke (both the software and the community) into something truly
extraordinary. His favorite mantra is the core values developed with his partners for their former startup
company, 10x Labs: “Speak the truth. Share the wealth. Change the world!” Scott currently lives in West
Seattle with his lovely wife Allison, his young son Kyle, a whiny German Shepherd dog, two very weird
house cats, and a cast of wonderful friends and neighbors that he wouldn’t trade for gold.

Bruce Hopkins, Microsoft MVP (ASP.NET), holds a BSCIS from DeVry University and holds certifica-
tions as an MCSE and several flavors of Linux. Bruce is currently the IT Director for Chattahoochee
Technical College in Marietta, Georgia and has held a wide variety of positions in technology through-
out his career ranging from programming and web design to network administration and management.
Bruce remarks that this varied experience is crucial to determining the correct tool for the task at hand.
This is shown by the many varied technologies he uses every day. These include Windows, Unix, SQL
Server, Oracle, MySQL, and many different Linux-based applications that are an integral part of main-
taining the college’s infrastructure. Bruce makes his home in Marietta, Georgia with his wife and son.

01_595636 ffirs.qxd 5/10/05 10:02 PM Page vi

Contents

Preface xv

Chapter 1: An Inside Look at the Evolution of DotNetNuke 1

IBuySpy Portal 2
ASP.NET 3
IBuySpy Portal Forum 5
IBuySpy Workshop 6
DotNetNuke (DNN) Web Site 22

Chapter 2: Installing DotNetNuke 29

Preparation 29
Objectives 30
Hardware Prerequisites 30
Software Prerequisites 31
Hosting Prerequisites 31

Implementation 31
Downloading DotNetNuke 32
Extracting the Installation File 32
Creating the Database 32
Creating the Database User 34
Setting Permissions 38
Creating the Web Site 39
Configuring .NET Nuke 44
Testing the Installation 45
Common Installation Issues 48

Explanation 49
Scenario 1: The Clean Install 50
Scenario 2: The Upgrade 51

Installation Templates 51
Summary 53

02_595636 ftoc.qxd 5/10/05 10:04 PM Page vii

viii

Contents

Chapter 3: Portal Overview 55

What Is a Portal? 55
Portal Organizational Elements 56

Parent/Child Portals 56
Pages 57
Panes 58
Containers 59

Modules 60
Account Login 61
Announcements 61
Banners 61
Contacts 61
Discussions 61
Documents 61
Events 62
FAQ 62
Feedback 62
IFrame 62
Image 62
Links 62
News Feeds (RSS) 62
Search Input 63
Search Results 63
Text/HTML 63
User Accounts 63
User Defined Table 63
XML/XSL 63
Additional Modules 63

User Roles 64
Summary 64

Chapter 4: Portal Administration 65

Who Is the Portal Administrator? 65
Where Do I Begin? 66
The Control Panel 67

The Site Wizard 68
The Help Button 75
The Preview Button 75

Configuring Your Portal 76
Site Settings 76
Security Roles 83

02_595636 ftoc.qxd 5/10/05 10:04 PM Page viii

ix

Contents

Pages 87
Skins 91
File Manager 92
Languages 95

Maintaining Your Portal 100
User Accounts 100
Vendors 103
Newsletters 106
Site Log 107
Recycle Bin 108
Log Viewer 109

Summary 111

Chapter 5: Host Administration 113

Who Is the Host? 113
Where Do I Begin? 114

SuperUsers Accounts 115
Configuring Your Installation 116

Host Settings 116
Managing Portals as Host 126

Portals 126
Skins 130
Log Viewer 131

Other Host Tools 133
Module Definitions 133
File Manager 137
Vendors 138
SQL 138
Schedule 139
Languages 144
Search Admin 147
Lists 148
Skins 150
Summary 150

Chapter 6: Modules 151

Module Architecture 151
Portal 151
Page 153
Module 153
Module Container 154

02_595636 ftoc.qxd 5/10/05 10:04 PM Page ix

x

Contents

Types of Modules 155
Announcements Module 155
Banner Module 161
Contacts Module 163
Discussions Module 163
Documents Module 164
Events Module 166
FAQs Module 168
Feedback Module 169
IFrame Module 169
Image Module 170
Links Module 171
News Feed (RSS) 172
HTML/Text Module 173
User Defined Table Module 174
XML/XSL Module 175

Management 176
Page Management 176
Module Management 178

Installation 183
Summary 185

Chapter 7: DotNetNuke Architecture 187

Technologies Used 187
Provider Model 188

Provider Configuration 190
Custom Business Objects 190

CBO Hydrator 192
Architectural Overview 195

Presentation Layer 196
Business Logic Layer 197
Data Access Layer 198
Data Layer 199

Security Model 201
Security in ASP.NET 2.0 201
DotNetNuke and ASP.NET 2.0 202
Security in DotNetNuke 3.0 202

Namespace Overview 205
Summary 206

02_595636 ftoc.qxd 5/10/05 10:04 PM Page x

xi

Contents

Chapter 8: Core DotNetNuke APIs 207

Introduction 207
Event Logging 208

The API 208
Exception Handling 216

The Exceptions Class 217
Localization 221

Locales 222
Resource Files 222
The API 224

Scheduler 230
HTTPModules 232

HTTP Modules 101 232
DotNetNuke HTTP Modules 235

Module Interfaces 240
IActionable 241
IPortable 251
IUpgradable 253
Inter-Module Communication 253
ISearchable 254

Summary 257

Chapter 9: Beginning Module Development 259

Planning Your Module Project 259
Ready Your Resources 261

Starting Development 261
Configuring Your Visual Studio .NET Project 262
Configuring DotNetNuke to Interface with Your Module 265

Summary 270

Chapter 10: Developing Modules: The Database Layer 273

Database Design 274
Database Structure 274

Database Providers 280
SQLDataProvider Class 280

Data Abstraction 285
DataProvider Class 286

Summary 287

02_595636 ftoc.qxd 5/10/05 10:04 PM Page xi

xii

Contents

Chapter 11: Developing Modules: Business Logic Layer 289

Developing the Business Logic Layer 289
Defining the Properties for the Info Class 290
Creating Objects Using the Controller Class 293

Custom Business Object Help Class 295
Optional Interfaces for the Events Module Controller Class 295

Summary 298

Chapter 12: Developing Modules: The Presentation Layer 299

Module User Interfaces 299
View Control 301
Settings Control 313
Edit Control 316

DotNetNuke Helper Functions 327
Error Handling 327
Navigation URLs 328

Summary 329

Chapter 13: Skinning DotNetNuke 331

File Organization 332
Processing Pages and Loading Skins 332
Packaging Skins and Containers 335
Creating Your Skin 336

Container Creation 348
Summary 352

Chapter 14: Distribution 353

Code Add-Ons 354
Modules 354

Module Manifest File 354
Packaging Modules 360
Resource File 361
Installing Modules 362

Skin Objects 365
Skin Object Manifest File 368

Providers 369
Provider Manifest File 369

Skinning Add-Ons 370

02_595636 ftoc.qxd 5/10/05 10:04 PM Page xii

xiii

Contents

Skins 370
Packaging Skins 370
Skin Configuration Files 372
Installing Skins 374

Containers 378
Packaging Containers 378
Installing Containers 378

Language Add-Ons 378
Language Packs 378

Language Pack Manifest File 379
Packaging Language Packs 381
Installing Language Packs 383

Summary 386

Appendix A: Resources 387

Appendix B: Frequently Asked Questions 391

Appendix C: System Message Tokens 395

Index 401

02_595636 ftoc.qxd 5/10/05 10:04 PM Page xiii

02_595636 ftoc.qxd 5/10/05 10:04 PM Page xiv

Preface

This book is aimed at people with development knowledge and for those who are just interested in
learning more about how DotNetNuke works.

Who This Book Is For
Experienced developers of ASP.NET and those who are knowledgeable about DotNetNuke may want to
skip Chapters 1–6. These chapters provide an overview of DotNetNuke and its operations. Chapters 7–14
get right into DotNetNuke architecture and development. However, we think you’ll gain valuable insight
into how DotNetNuke works by reading the entire book from front to back.

What This Book Covers
We split this book into two primary sections. The first half provides you with insight into how to per-
form an installation and the basic operations of a DotNetNuke portal. In addition, you’ll gain insight
into the history of this open source project brought to you by the individuals who developed it from its
beginnings.

The second half of the book provides you with information on how the application is architected, as well
as how you can extend it by developing modules and skins.

How This Book Is Structured
This book is broken down into two parts: The first part is aimed at the non-developer or administrator
type. We provide you with a history of the project, move on to installing DotNetNuke on the server, and
then show how to manage and administer a DotNetNuke portal.

The second part is for developers. Starting with Chapter 7, we discuss the DotNetNuke application
architecture and how the application works. We then move on to extending the portal framework by
developing modules that plug into a DotNetNuke portal. Finally, we cover the flexible skinning capabili-
ties of DotNetNuke and how you can create your own unique look for your portal.

03_595636 fpref.qxd 5/10/05 10:04 PM Page xv

xvi

Preface

What You Need to Use This Book
In order to install DotNetNuke and a supporting database you will need either Windows 2003 Server or
Windows XP (development only). This book covers a basic install of DotNetNuke using a SQL Server
database as the Data Provider. You will need to have access to either SQL Server 2000 or MSDE (develop-
ment only) on the same machine or a remote machine.

To participate in the development chapters, you will need Visual Studio .NET 2003.

Contributors
In addition to the authors, the DotNetNuke development team is comprised of many individuals
working together from around the world. We would like to acknowledge these people and their contri-
bution in this section of the book. We’ve listed the DotNetNuke contributors and their role within the
community.

Board of Directors
The Board of Directors is responsible for managing the long-term strategic vision of the project. They are

Dan Caron, see About the Authors.

Joe Brinkman, see About the Authors.

Patrick Santry, see About the Authors.

Scott Willhite, see About the Authors.

Shaun Walker, see About the Authors.

Core Team
The Core Team is divided into two levels of participation — an Inner Team and an Outer Team. The two
levels represent different levels of trust and responsibility within the DotNetNuke organization.

Inner Core Team
Comprised of individuals who have demonstrated their long-term commitment to the project. They
have acted professionally, accepted responsibility, delivered assigned tasks successfully, and are actively
engaged with the community. They act as Managers in key functional areas and manage communication
with sub-teams of Outer Team members.

Bruce Hopkins, see About the Authors.

03_595636 fpref.qxd 5/10/05 10:04 PM Page xvi

xvii

Preface

Charles Nurse has been developing for the World Wide Web using Microsoft Technologies since 1996.
While now a Canadian citizen, Charles was born in the UK and has a Bachelor of Arts in Chemistry from
Oxford University. In 1978 he moved to Canada and obtained a Ph.D in Chemistry from the University of
British Columbia. During his undergraduate and graduate studies he became interested in computer pro-
gramming and helped develop a molecular modeling application using Fortran, as well as a number of
smaller projects in Algol 60. After spending more than 15 years in Chemistry Research and in Scientific
Instrumentation Sales, he started his own contract software development business — KeyDance
Computer Services. He lives in Langley, BC, Canada with his wife Eileen and two teenage children.

Christopher Paterra is a member of the Bugs & Enhancements Specialist, Core Developer & Lead
Release Manager Core Team roles. Chris has had involvement in many areas of DotNetNuke and his
more well known enhancement includes the Enhanced Survey to use Personalization for vote tracking
and added ability to keep results private. Chris has written several procedure documents for the Core
Team and helped organize and manage the skinning contest. Former NT MCSE and now studying
MSCAD, Chris has VB.NET, C#, Microsoft SQL Server 2000, C, C++, VB 6 experience.

Chris has implemented DNN with custom modules for use in a school as their lunch inventory/cash
control system using swipe card technology. He has also implemented DotNetNuke it in a Call Center
with custom modules as its intranet. Another exciting project was one of the first releases of the power
of DotNetNuke skinning with the launch of a web site promoting Christina Aguilera.

Dan Caron, see About the Authors.

Joe Brinkman, see About the Authors.

Patrick Santry, see About the Authors.

Philip Beadle (MCAD, MVP) of Byte Information Technology in 2004 (www.byte.com.au). Philip is a
foundation member of the DotNetNuke Core Team, a Microsoft Certified Application Developer and is
experienced in the development and commercial application of the DotNetNuke Framework based on
Microsoft’s .NET technology. He has successfully developed and implemented sites for clients in
Australia and overseas and was recently awarded the Microsoft Most Valuable Professional (MVP)
award in ASP/ASP.NET.

Scott McCulloch, see About the Authors.

Scott Willhite, see About the Authors.

Shane Colley is a founding DotNetNuke Core Team member who serves the DNN community as an
Inner Core Team member, Core Developer, and Security Specialist. Shane’s contributions to DNN
include development of the Provider Model for rich text editing and multiple security enhancements.
He is also active in the DNN forums, providing help and interaction with the community.

Shane is a graduate of Computer Science at Iowa State University and over his nine-year career as an IT
professional he has honed his expertise with a wide variety of programming languages, with specific
emphasis on web-based .NET development. Shane lives in Chicagoland with his girlfriend Erin and dog
Monk.

03_595636 fpref.qxd 5/10/05 10:04 PM Page xvii

xviii

Preface

Shaun Walker, see About the Authors.

Vicenç Masanas works as a Developer and Analyst at the Universitat de Girona, Spain. He has been
developing web sites with Microsoft technologies, including ASP, VB, ASP.NET, Access, and SQL Server,
since 1998. Vicenç joined the DotNetNuke community in summer 2003 coming from IBS portal. Today,
his role within the DotNetNuke team is contributing as a Core Developer, Bugs & Enhancement
Specialist, and DotNetNuke Evangelist for the Spanish area. Currently, Vicenç is working on a number
of projects based on the DotNetNuke platform. Specializing on this platform as a framework for future
works, Vicenç has also written VS.NET tools and tutorials for DNN developers, which have been highly
acclaimed (available at http://dnnjungle.vmasanas.net). He provides online support and training
for DotNetNuke and custom module development and consultancy for DotNetNuke projects.

Geert Veenstra, a member of the DotNetNuke Inner Core team, is currently working for Schmit
(http://www.schmit.nl), a company that specializes in Parking solutions as a technical support spe-
cialist. In his daily job he works with a multitude of operating systems (both Windows and Unix variants)
and databases (such as Oracle, SQL, and MySql Server). He has created the company’s intranet and a
customer bug-reporting web site (now both using DotNetNuke of course). He joined the DotNetNuke
team in mid 2003 and has been working mainly on Localization and Bug Fixing. The first third-party
dotnetnuke dataprovider (for MySql) was created by him as well as a DNN installer.

Jeremy White is founder and president of Webstone Technologies, LLC, and a Founding member of the
DNN Core Team. He holds a MCSE, MCP+I, and MCT certifications and has many years of experience
in programming, networking, WiFi, VoIP, and CMS technology implementations for a multinational
company. Jeremy has been actively involved in designing and developing web solutions with various
Microsoft Internet technologies including ASP and ASP.NET. He is the author of the popular “Shadow”
module for DNN 1.x and 2.x and has been a frequent DNN forums contributor since February 2003.
Jeremy resides on Long Island, New York, with his wife and two dogs.

Outer Core Team
The Outer Core Team is comprised of individuals who have achieved recognition within the DotNetNuke
community — sometimes based on technical prowess but most often based upon their unselfish actions
assisting other community members. Outer Team members work closely with Inner Team members to
help manage various aspects of the project. Once an Outer Team member gains a unanimous vote of
respect and trust in the DotNetNuke Core, they will be offered a promotion to the Inner Team.

Bert Corderman is a Senior Database administrator for Symantec’s Managed Security Services. Bert is
relatively new to programming but has more than seven years of experience in technology. He holds the
following certifications: MCSE + Internet (NT 4.0), MCSE(2000), MCDBA, CCNA, and CCDA. He has
been involved with the DotNetNuke open-source portal project since May of 2003. He is currently active
in the following: Quality Assurance Testers, Bugs & Enhancement Specialists, and Database Developers.

Bo Nørgaard holds a Bachelor degree in Electronic Engineering, is a certified Psion developer and engi-
neer, and is a certified Internet Security Systems security engineer. Bo Nørgaard has been programming
since 1979 and been through Comal 80, Pascal, ANSI C, ADA, PLM, ASM (Intel), OO Pascal, Delphi, C++,
Perl, PHP, Visual Basic, Java, and now C#. He started teaching in 1991 at the Copenhagen University
College of Engineering, and later at the National Theatre School of Denmark. Bo has presented at several
events including detailed security practices at CA-World in New Orleans. Bo Nørgaard is CEO of Bonosoft
and operates the DotNetNuke developer community site (www.dotnetnuke.dk), which has numerous
resources for both Visual Basic and Visual C# programmers writing plug-in modules for DotNetNuke.

03_595636 fpref.qxd 5/10/05 10:04 PM Page xviii

xix

Preface

Bryan Andrews has been developing web applications since Netscape 1.0 and has worked in many dif-
ferent capacities in the past 10 years from infrastructure architecture and management, to the develop-
ment of collaborative and knowledge management tools. He is one of the Founders and CTO of an
Atlanta headquartered marketing agency (Trend Influence) and an associated development company
(ApplicationTheory) that produces marketing and communication tools. DotNetNuke has become the
platform of choice for many of their clients and as such they have developed a complete suite of tools
and agency-specific modules to support these clients.

Cathal Connolly works as a Senior Developer and Consultant with EG Information Consulting
(http://www.eg-consulting.com/), based in Belfast, Northern Ireland. Cathal has previously
worked for IT companies in the UK, U.S., and Austria, developing both web and Client/Server applica-
tions using Microsoft technologies. His current focus is the development of secure Banking applications
and bespoke Smart Client .net products. Cathal is an MCSD and holds a BSc in Computer Science.

Chris Hammond, a web application developer for a small software development company in St. Louis,
Missouri and is an active speaker on DotNetNuke topics around the Midwest. On the side, he specializes in
portal development and search engine optimization through Christoc.com (http://www.christoc.com).
Chris has multiple DotNetNuke endeavors including DnnCart.com (http://www.dnncart.com/) where
he provides DNN Support and Module development services. He also runs multiple community portals
focusing around the Sports Car Club of America, (http://www.solo2.org, http://www.sccaforums
.com). You can read more about him on his weblog at http://www.chrishammond.com/.

Clem Messerli, with a vision for using DotNetNuke to train persons who are equipped to use new tech-
nologies in the service of the Church, Clem’s expertise in web administration and strong background in
web development help to provide debugging support and unique insight into future enhancements.

Driven by the Great Commission, Clem has founded CTC Ministries, which is dedicated to building
low-cost Cooperative Ministries in the Central Iowa Region where he is currently employed by Rockwell
Collins as a Sr. Web Administrator.

David Haggard is an ordained minister, founder of NewCovenant Evangelistic Ministries, an interna-
tional ministry of the Christian Gospel and an outreach to widows. He also founded NewCovenant
Consulting for support of the ministry. The consulting arm specializes in Internet services to churches
and non-profits, but provides services to all businesses and individuals that are not counter to the min-
istry. David’s IT background started with Microsoft in Windows 95 support, and grew into web develop-
ment, ASP, and finally .NET. David lives and works out of his rural home near Thurman, Iowa, USA,
with his wife Cheryl.

John Mitchell is the Founder and President of Snapsis Software, Inc. (http://www.snapsis.com). John
has more than 20 years of development experience and has been working on the leading edge of Internet
technologies for the past seven years, specializing in the architecture, design, development, and imple-
mentation of portal/e-commerce applications.

John has led teams in the development of several web sites including http://SamsClub.com and
http://www.Maytag.com. John has been using and enhancing DotNetNuke since May 2003 and is also
a founding member of the Tulsa .Net Users Group (http://www.TulsaDnug.org).

Jon Henning is senior consultant with Solution Partners Inc., www.solpart.com, a Chicago-based con-
sulting company specializing in Microsoft technologies. He is an MCSD who has been working with
Visual Studio .NET since the PDC release. While he has written several articles dealing with all aspects

03_595636 fpref.qxd 5/10/05 10:04 PM Page xix

xx

Preface

of programming, his current love has been found in the development of rich client-side functionality.
Most notably is the Solution Partners ASP.NET Hierarchical Menu, which is the default menu that is
used within DotNetNuke. Recently for version 3, Jon initiated the development of the DotNetNuke
ClientAPI, which enables developers to write rich client-side cross-browser logic against a simple API.

Jim Duffy is a Microsoft MVP, self-proclaimed DotNetNuke Evangelist, and the president of TakeNote
Technologies. TakeNote, a Developer’s Choice Award winner for hands-on training, specializes in train-
ing and creating business solutions with Microsoft enterprise technologies. In response to his desire to
spread the DotNetNuke word to others, Jim authored two DotNetNuke training classes. One focuses on
creating and administrating a DNN portal and the other focuses on developing custom DNN modules.
He has also presented DotNetNuke topics at a number of regional and international developer confer-
ences including DevTeach 2004 and DevEssentials. Jim is a popular speaker due to his knowledge,
humor, and quick-witted approach. He is an exceptional trainer, skilled developer, and has been pub-
lished in a number of leading publications including CoDe Magazine (www.code-magazine.com). Jim’s
background also includes a Bachelor of Science degree in Computer and Information Systems and more
than 20 years of programming and training experience. Jim is also co-host of Computers 2K4, a weekly
call-in radio show (AM 850 The Buzz) in Raleigh, NC. Jim’s passion for teaching and presenting, cou-
pled with his desire to help people meet their professional and personal goals, make him a welcome
addition to the DNN Core Team.

Leigh Pointer is an accomplished professional with 17 years experience in the IT sector. He is highly
experienced in user interaction design, web design, software engineering, problem solving, and user
relations. He demonstrates leadership in resource and project management and has an in-depth under-
standing of Microsoft development tools. Leigh is results-oriented and thrives in an innovative, creative,
challenging, fast-paced workplace. He is also the founder of the Netherlands (http://netherlands
.dnn-usergroup.net) and European DNN user groups and worked closely with Microsoft to achieve
this. Leigh maintains his own modules for DNN at http://www.subzero-solutions.net along with
other interesting topics.

Lorraine Young is a Business Analyst for Byte Information Technology based in Melbourne, Australia
(http:/www.byte.com.au). Lorraine is a founding member of the DotNetNuke Core Team who pro-
vides assistance in the user experience and documentation areas of the DotNetNuke Project.

Lorraine holds a Bachelor of Arts degree in Professional Writing and Literature and a Post Graduate
degree in Orientation and Mobility for vision impaired adults and children.

Mark Hoskins is the Founder of KodHedZ Software Development (www.KodHedZ.net) based out of
Victoria, BC, Canada where he has been developing ASP.NET Business Management, eCommerce and
Dynamic Internet Applications for more than three years, primarily using DotNetNuke as the develop-
ment platform since its conception in December 2002.

In addition to web applications, Mark has authored many articles and tutorials for developers on imple-
menting and developing solutions using DotNetNuke and provides a wealth of resources at his flagship
domain, www.KodHedZ.net.

Matt Fraser has been developing for the World Wide Web since 1996. He is the owner of Liquid
Platinum Technologies, specializing in custom Internet applications for small businesses using Microsoft
products and technologies. Previously, Matt has worked as a web developer for Chalk Media and the

03_595636 fpref.qxd 5/10/05 10:04 PM Page xx

xxi

Preface

Bank of Montreal, creating online learning solutions. He also had a key role in designing and building
the eyeReturn Voken engine for online advertising and loyalty programs. Matt holds a Bachelor of
Computer Science specializing in Software Engineering from 1999. He is currently residing in Los
Angeles, CA.

Nina Meiers is a self-employed DotNetNuke web site skinner whose Core Team roles include User
Experience Specialist, DotNetNuke Evangelist, and Technical Writing & Marketing Specialist. Nina’s
experience in graphics and eye for technical perfection as well as an ability to work well with developers
and clients alike has helped find her niche in the DotNetNuke community with over 12,500 downloads
of many quality free skins available from http://www.xd.com.au. Nina also has an extensive portfolio
of projects from small business to Fortune 500 companies on her web site.

Nina is married with children and enjoys renovations, reading, writing, and driving her muscle sports car.

Pete Garyga, systems engineer and developer, holds an MSCE, MCSA, MCP, CCNA, and CNA. Pete is
employed by Derbyshire Fire & Rescue Service in the UK (http://www.derbys-fire.gov.uk) as the
Systems Support and Development Officer. Pete’s personal web site is http://www.garyga.com; he
has also recently set up http://www.dnnresources.com for the DotNetNuke community.

Phil Guerra is a member of the Bugs & Enhancements Core Team. Phil writes technical articles on vari-
ous DNN topics, which are posted on his web site, www.hgworks.com/handcoded, and have been
translated to several languages for posting on a number of sites worldwide. His targeted audience is
ASP.NET developers that employ hand-coded methods to build .NET projects. He is a frequent poster on
the ASP.NET DNN forums and offers users advice on enhancing their DNN portals and assists in trou-
bleshooting reported DNN issues. His areas of interests include RSS/XML, Graphics, Localization and
Globalization, and general VB.NET topics.

Phil has implemented DNN with custom modules for use in various intranet applications, mostly
healthcare related. He has worked in the healthcare industry for more than 18 years in various positions
as programmer, analyst, support supervisor, and IT Director. He offers services as a private consultant
and developer through his consulting company, HGWorks. Phil currently resides in Mission, Kansas,
but looks forward to returning to the Phoenix, Arizona metro area.

Robert Collins is the Founder and President of WillowTree Software, Inc. (http://www.willowtree
software.com/). Robert is a veteran developer with more than seven years of web development experi-
ence. Specializing in the design, development, and implementation of e-commerce applications, corpo-
rate Intranet tools, and high availability data-driven web applications, Robert has established himself
as a leading force in the web development community. Robert founded the successful “Boise .Net
Developers User Group” (http://www.netdug.com/), a user group dedicated to promotion of the
Microsoft .NET Framework and Services. While with the Microsoft Corporation, Rob was responsible for
providing high availability web and database application solutions for Microsoft internal services and
Microsoft partners.

In addition to web application development, Robert is also an established desktop/client server applica-
tions developer, network systems engineer, and cluster services specialist with more than four years of
experience working as a systems integrator (MCP, MCP+I, MCSE, MCSE+I).

03_595636 fpref.qxd 5/10/05 10:04 PM Page xxi

xxii

Preface

Salar Golestanian specializes in skinning and UI, working solely in the DotNetNuke environment. He is
currently targeting clients wanting content management solutions, and has years of creative design
experience. Salar is working on a number of projects based on the DotNetNuke platform. The links to
various projects and showcases are available on salaro.com.

Salar’s background is in Internet technology using Microsoft tools. He has a Bachelor of Science and
MPhil in Physics. He lives with his fiancée and daughter near London UK.

Shawn Mehaffie holds an MCP (ASP.NET) certification and is working on his MCSD certification.
Shawn has 14 years of programming experience in VB.NET, ASP.NET, and C# and has worked with
.NET since its release. He was on a team that wrote a Payment Engine web service as part of the
Microsoft .Net Blaze program. As a side job, Shawn owns his own company, PC Resources, LLC
(http://www.pcrresourcesllc.com). Shawn has been a part of the DotNetNuke community since
v1.0 and currently uses DotNetNuke to create web sites for his customers. Shawn is the QA Team Leader
and a member of the Bug & Enhancement Team. Shawn is excited about being on the DoteNetNuke
Core Team and the positive contributions his team can have on future releases of DotNetNuke. Shawn
lives in Blue Springs, Missouri with his wife and two sons (Austin and Tyler).

Steve Fabian (Gooddogs.com), has been designing and developing software solutions for 19 years. In
addition to programming in more then a dozen different languages, Steve is proficient in graphics and
web design and for the past few years has focused on user interface design, .NET development, both
client and browser based, and most recently, DotNetNuke. Gooddogs.com provides both free and cus-
tom skins for the DotNetNuke community as well as the free Gooddogs Repository Module for
DotNetNuke. Steve lives in New Jersey with his wife and his five dogs, Kahlua, Amaretto, Sambucca,
Daiquiri, and Whiskey. In his extremely limited free time, Steve and his wife do volunteer work for
BARKS, an animal rescue shelter in Byram, New Jersey.

Tam Tran Minh holds an architect degree from HCMC-Vietnam University of Architecture. He is cur-
rently Chairman and CIO of TTT Corporation in Vietnam (http://www.tttcompany.com). Since 2003,
DotNetNuke is the main content management portal for his company. Tam has developed and con-
tributed several DotNetNuke modules to the community.

Tam is currently developing a management and collaboration system for TTT with Visual Basic,
Exchange/Outlook, and now VB.NET. He is author of several articles in PC-World Vietnam and has
published a book titled Architectural Space - Virtual and Reality (winner of the National Architectural
Awards 2002 in Vietnam) based on projects of TTT using computer graphic technologies. Tam speaks
both Vietnamese and English.

Todd Mitchell is a Senior Analyst Programmer at Byte Information Technology (http://www.byte
.com.au). Prior to joining Byte, Todd ran his own consulting business specializing in IT infrastructure
and portal applications for small to medium enterprises, undertaking a range of projects including the
customization of DotNetNuke for a major portal application in the telecommunications industry.

Todd is an accomplished IT professional who is expert in driving projects and technologies that support
and enhance business growth and has extensive IT infrastructure experience gained in a number of
industries. Todd is a founding member of the DotNetNuke Core Team. Todd holds an MCAD and is a
proficient programmer in a number of languages including HTML, Java Script, VB Script, ASP, Visual
Basic VBA, and SQL.

03_595636 fpref.qxd 5/10/05 10:04 PM Page xxii

xxiii

Preface

Yarko Tymciurak has been reading code since 1968, and writing software since 1976. He has worked on
control systems, compilers, operating systems, and communication systems. He has lead teams of
Software Architects and trained engineering, business, and sales teams in communication skills.
Currently he is a System Architect of mobile devices. Yarko holds a BSEE in Computer Engineering
from the University of Arizona.

Other Members of the Outer Core Team
Jason Graves

Josh Weinstein

Richard Cox

Richard Ferguson

Russ Johnson

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ We italicize important words when we introduce them

❑ We show keyboard strokes like this: Ctrl+A

❑ We show URLs within the text like so: http://www.dotnetnuke.com

❑ We present code in two different ways:

In code examples we highlight new and important code with a gray background.

The gray highlighting is not used for code that’s less important in the present
context, or has been shown before.

Source Code
To download DotNetNuke to work with as you make your way through this book you can surf directly to
www.dotnetnuke.com, or you can link to the DotNetNuke site through the Wrox site at www.wrox.com.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

03_595636 fpref.qxd 5/10/05 10:04 PM Page xxiii

xxiv

Preface

Once at the Wrox site, simply locate the book’s title (either by using the Search box or by using one of the
title lists) and follow the provided link to www.dotnetnuke.com.

Because many books have similar titles, you may find it easiest to search by ISBN; for this book the 10-digit ISBN
is 0-7645-9563-6 and the 13-digit ISBN is 978-0-7645-9563-9.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list
including links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport.shtml
and complete the form there to send us the error you have found. We’ll check the information and, if appropri-
ate, post a message to the book’s errata page and fix the problem in subsequent editions of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you must join.

03_595636 fpref.qxd 5/10/05 10:04 PM Page xxiv

xxv

Preface

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

03_595636 fpref.qxd 5/10/05 10:04 PM Page xxv

03_595636 fpref.qxd 5/10/05 10:04 PM Page xxvi

Professional DotNetNuke™ ASP.NET Portals

Shaun Walker, Patrick J. Santry, Joe Brinkman, Daniel Caron,
Scott McCulloch, Scott Willhite, and Bruce Hopkins

04_595636 flast.qxd 5/10/05 10:05 PM Page xxvii

04_595636 flast.qxd 5/10/05 10:05 PM Page xxviii

An Inside Look at the
Evolution of DotNetNuke

As much as I would like people to believe that DotNetNuke was intentionally created as a premier
open source project for the Microsoft platform, it is unfortunately not the case. As is true with
many open source projects, the software was created with commercial intentions in mind, and
only when it was discovered that its true purpose would not be realized was it reconsidered as an
open source project.

In 2001–2002 I was working for a medium-sized software consulting company that was providing
outsourced software development services to a variety of large U.S. clients specializing primarily in
e-Learning initiatives. The internal push was to achieve CMM 3.0 on a fairly aggressive schedule
so that we could compete with the emerging outsourcing powerhouses from India and China. As a
result there was an incredible amount of focus on process and procedure and somewhat less focus
on the technical aspects of software engineering. Because the majority of the client base was inter-
ested in the J2EE platform, the company had primarily hired resources with Java skills — leaving
myself with my legacy Microsoft background to assume more of an internal development and pro-
ject management role. The process improvement exercise consumed a lot of time and energy for the
company; attempting to better define roles and responsibilities and ensuring proper documentation
throughout the project life cycle. Delving into CMM and the PMBOK were great educational bene-
fits for me — skills that would prove to be invaluable in future endeavors. Ultimately the large
U.S. clients decided to test the overseas outsourcing options anyway, which resulted in severe
downsizing for the company. It was during these tumultuous times that I recognized the potential
of the newly released .NET Framework (beta) and decided that I would need to take my own ini-
tiative to learn this exciting new platform in order to preserve my long-term employment outlook.

For a number of years I had been maintaining an amateur hockey statistics application as a side-
line hobby business. The client application was written in Visual Basic 6.0 with a Microsoft Access
backend, and I had augmented it with a simplistic web publishing service using Active Server
Pages 3.0 and SQL Server 7.0. However, better integration with the World Wide Web was quickly
becoming the most highly requested enhancement and I concluded that an exploration into

05_595636 ch01.qxd 5/10/05 10:06 PM Page 1

ASP.NET was the best way to enhance the application, while at the same time acquire the skills neces-
sary to adapt to the changing landscape. My preferred approach to learning new technologies is to expe-
rience them firsthand rather than through theory or traditional education. It was during a Microsoft
Developer Days conference in Vancouver, British Columbia in 2001 that I became aware of a reference
application known as the IBuySpy Portal.

IBuySpy Portal
Realizing the educational value of sample applications, Microsoft had built a number Source Projects,
which were released with the .NET Framework 1.0 Beta to encourage developers to cut their teeth
on the new platform. These projects included full source code and a very liberal End User License
Agreement (EULA) that provided nearly unrestricted usage. Microsoft co-developed the IBuySpy
Portal with Vertigo Software and promoted it as a “best practice” example for building applications in
the new ASP.NET environment. Despite its obvious shortcomings, the IBuySpy Portal had some very
strong similarities to both Microsoft Sharepoint as well as other open source portal applications on the
Linux/Apache/mySQL/PHP (LAMP) platform. The portal allowed you to create a completely dynamic
web site consisting of an unlimited number of virtual “tabs” (pages). Each page had a standard header
and three content panes — a left pane, a middle pane, and a right pane (a standard layout for most
portal sites). Within these panes the administrator could dynamically inject “modules” — essentially
mini-applications for managing specific types of web content. The IBuySpy Portal application shipped
with six modules designed to cover the most common content types — (announcements, links, images,
discussions, html/text, XML) as well as a number of modules for administrating the portal site. As an
application framework the IBuySpy Portal (see Figure 1-1) provided a mechanism for managing users,
roles, permissions, tabs, and modules. With these basic services, the portal offered just enough to whet
the appetite of many aspiring ASP.NET developers.

Figure 1-1

2

Chapter 1

05_595636 ch01.qxd 5/10/05 10:06 PM Page 2

ASP.NET
The second critical item that Microsoft delivered at this point in time was a community Forums page on
the www.asp.net web site (see Figure 1-2). This Forum provided a focal point for Microsoft developers
to meet and collaborate on common issues in an open, moderated environment. Prior to the release of
the Forums on www.asp.net there was a real void in terms of Microsoft community participation in the
online or global sphere, especially when compared to the excellent community environments on other
platforms.

Figure 1-2

One discussion forum on the www.asp.net site was dedicated to the discussion of the IBuySpy Portal
application, and it soon became a hotbed for developers to discuss their enhancements, share source code
enhancements, and debate IT politics. I became involved in this Forum early on and gradually increased
my community participation as my confidence in ASP.NET and the IBuySpy Portal application grew.

In order to appeal to the maximum number of community stakeholders, the IBuySpy Portal was avail-
able in a number of different source code release packages. There were VB.NET and C#.NET language
versions, each containing their own VS.NET and SDK variants. Although Microsoft was aggressively
pushing the newly released C# language, I did not feel a compelling urge to abandon my familiar Visual
Basic roots. In addition, my experience with classic ASP 3.0 allowed me to conclude that the new code-
behind model in VS.NET was far superior to the inline model of the SDK. As luck would have it, I was
able to get access to Visual Studio .NET through my employer. So as a result, I moved forward with the

3

An Inside Look at the Evolution of DotNetNuke

05_595636 ch01.qxd 5/10/05 10:06 PM Page 3

VB.NET/VS.NET version as my baseline framework. This decision would ultimately prove to be
extremely important in terms of community acceptance, as I will explain later.

When I first started experimenting with the IBuySpy Portal application I had some very specific
objectives in mind. In order to support amateur sports organizations, I had collected a comprehensive
set of end user requirements based on actual client feedback. However after evaluating the IBuySpy
Portal functionality, it quickly became apparent that some very significant enhancements were
necessary if I hoped to achieve my goals. My early development efforts, although certainly not elegant
or perfectly architected, proved that the IBuySpy Portal framework was highly adaptable for building
custom applications and could be successfully used as the foundation for my amateur sports hosting
application.

The most significant enhancement I made to the IBuySpy Portal application during these early stages
was a feature that is now referred to as “ multi-portal “ or “site virtualization.” Effectively, this was a
fundamental requirement for my amateur sports hosting model. Organizations wanted to have a self-
maintained web site but they also wanted to retain their individual identity. A number of vendors had
emerged with semi-self-maintained web applications but nearly all of them forced the organization to
adopt the vendor’s identity (that is, www.vendor.com/clientname rather than www.clientname.com).
Although this may seem like a trivial distinction for some, it has some major effects in terms of brand
recognition, site discovery, search engine ranking, and so on. The IBuySpy Portal application already
partitioned its data by portal (site) and it had a field in the Portals database table named PortalAlias,
which was a perfect candidate for mapping a specific domain name to a portal. It was as if the original
creators (Microsoft/Vertigo) had considered this use case during development but had not had enough
time to complete the implementation, so they had simply left the “hook” exposed for future develop-
ment. I immediately saw the potential of this concept and implemented some logic that allowed the
application to serve up custom content based on domain name. Essentially, when a web request was
received by the application, it would parse the domain name from the URL and perform a lookup on the
PortalAlias field to determine the content that should be displayed. This site virtualization capability
would ultimately become the “killer” feature that would allow the application to achieve immediate
popularity as an open source project.

Over the next 8 to 10 months, I continued to enhance and refactor the IBuySpy Portal application as I
created my own custom implementation (now codenamed SportsManager.Net). I added numerous fea-
tures to improve the somewhat limited portal administration and content management aspects. At one
point I enlisted the help of another developer, John Lucarino, and together we steadily improved the
framework using whatever spare time we were able to invest. Unfortunately, since all of this was going
on outside of regular work hours, there was very little time to focus on building a viable commercial
venture. So at the end of 2002, it soon became apparent that we did not have enough financial backing or
a business model to take the amateur sports venture to the next level. This brought the very commercial
nature of the endeavor under scrutiny. If the commercial intentions were not going to succeed, I at least
wanted to feel that my efforts had not been in vain. This forced me to evaluate alternative non-commer-
cial uses of the application. Coincidentally, I had released the source code for a number of minor applica-
tion enhancements to the www.asp.net community Forum during the year and I began to hypothesize
that if I abandoned the amateur sports venture altogether, it was still possible that my efforts could bene-
fit the larger ASP.NET community.

The fundamental problem with the IBuySpy Portal community was the fact that there was no central
authority in charge of managing its growth. Although Microsoft and Vertigo had developed the initial
code base, there was no public commitment to maintain or enhance the product in any way. Basically

4

Chapter 1

05_595636 ch01.qxd 5/10/05 10:06 PM Page 4

the product was a static implementation, frozen in time, an evolutionary dead-end. However, the
IBuySpy Portal EULA was extremely liberal, which meant that developers were free to enhance, license,
and redistribute the source code in an unrestricted manner. This led to many developers creating their
own customized versions of the application, sometimes sharing discrete patches with the general com-
munity, but more often keeping their enhancements private; revealing only their public-facing web sites
for community recognition (one of the most popular threads at this time was titled “Show me your
Portal”). In hindsight, I really don’t understand what each developer was hoping to achieve by keeping
their enhancements private. Most probably thought there was a commercial opportunity in building a
portal application with a richer feature set than their competitor. Or perhaps individuals were hoping to
establish an expert reputation based on their public-facing efforts. Either way, the problem was that this
mindset was really not conducive to building a community but rather to fragmenting it — a standard
trap that tends to consume many things on the Microsoft platform. The concept of sharing source code
in an unrestricted manner was really a foreign concept, which is obviously why nobody thought to step
forward with an organized open source plan.

I have to admit I had a very limited knowledge of the open source philosophy at this point since all of
my previous experience had been in the Microsoft community — an area where “open source” was sim-
ply equated to the Linux operating system movement. However, there had been chatter in the Forums at
various times regarding the organized sharing of source code, and there was obviously some interest in
this area. Coincidentally, a few open source projects had recently emerged on the Microsoft platform to
imitate some of the more successful open source projects in the LAMP community. In evaluating my
amateur sports application, I soon realized that nearly all of my enhancements were generic enough that
they could be applied to nearly any web site — they were not sports related whatsoever. I concluded
that I should release my full application source code to the ASP.NET community as a new open source
project. So, as I mentioned earlier, the initial decision to open source what would eventually become
DotNetNuke happened more out of frustration of not achieving my commercial goals rather than predi-
cated philanthropic intentions.

IBuySpy Portal Forum
On December 24, 2002, I released the full open source application by creating a simple web site with a
zip file for download. The lack of foresight of what this would become was extremely evident when you
consider the casual nature of this original release. However, as luck would have it, I did do three things
right. First, I thought I should leverage the “IBuySpy” brand in my own open source implementation so
that it would be immediately obvious that the code base was a hybrid of the original IBuySpy Portal
application, an application with widespread recognition in the Microsoft community. The name I chose
was IBuySpy Workshop because it seemed to summarize the evolution of the original application —
not to mention the fact that the “IBSW” abbreviation preferred by the community contained an abstract
personal reference (“SW” are my initials). Ironically, I did not even have the domain name resolution
properly configured for www.ibuyspyworkshop.com when I released (the initial download links were
based on an IP address, http://65.174.86.217/ibuyspyworkshop). The second thing I did right
was require people to register on my web site before they were able to download the source code. This
allowed me to track the actual interest in the application at a more granular level than simply by the
total number of downloads. Third, I publicized the availability of the application in the IBuySpy Portal
Forum on www.asp.net (see Figure 1-3). This particular forum was extremely popular at this time; and
as far as I know, nobody had ever released anything other than small code snippet enhancements for
general consumption. The original post was made on Christmas Eve, December 24, 2002, which had
excellent symbolism in terms of the application being a gift to the community.

5

An Inside Look at the Evolution of DotNetNuke

05_595636 ch01.qxd 5/10/05 10:06 PM Page 5

Figure 1-3

IBuySpy Workshop
The public release of the IBuySpy Workshop (see Figure 1-4) created such a surge in Forum activity that
it was all I could do to keep up with the feedback, especially since this all occurred during the Christmas
holidays. I had a family vacation booked for the first two weeks of January, and I left for Mexico on
January 2, 2003 (one week after the initial IBuySpy Workshop release). At the time, the timing of this
family vacation seemed very poor as the groundswell of interest in the IBuySpy Workshop seemed like
it could really use my dedicated focus. However in hindsight, the timing could not have been better,
because it proved that the community could support itself — a critical element in any open source
project. When I returned home from vacation I was amazed at the massive response the release had
achieved. The IBuySpy Portal Forum became dominated with posts about the IBuySpy Workshop and
my Inbox was full of messages thanking me for my efforts and requesting me for support and enhance-
ments. This certainly validated my decision to release the application as an open source project, but
also emphasized the fact that I had started a locomotive down the tracks and it was going to take some
significant engineering to keep it on the rails.

Over the coming months I frantically attempted to incorporate all community suggestions into the appli-
cation while at the same time keep up with the plethora of community support questions. Because I was
working a day job that prevented effort on the open source project, most of my evenings were consumed
with work on the IBuySpy Workshop, which definitely caused some strain on my marriage and family
life. Four hours of sleep per night is not conducive to a healthy lifestyle but, like I said, the train was
rolling and I had a feeling the project was destined for bigger things.

6

Chapter 1

05_595636 ch01.qxd 5/10/05 10:06 PM Page 6

Figure 1-4

Supporting a user base through upgrades is fundamental in any software product. This is especially true
in open source projects where the application can evolve very quickly based on community feedback and
technical advancements. The popular open source expression is that “no user should be left on an evolu-
tionary dead-end.” As luck would have it, I had designed a very reliable upgrade mechanism in the
original sports management application, which I included in the IBuySpy Workshop code base. This fea-
ture allowed users of the application to easily migrate from one release version to the next — a critical
factor in keeping the community engaged and committed to the evolution of the product.

In February 2003, the IBuySpy Portal Forum had become so congested with IBuySpy Workshop threads
that it started to become difficult for the two communities to co-exist peacefully. At this point, I sent an
e-mail to the anonymous alias posted at the bottom of the Forums page on the www.asp.net site with
a request to create a dedicated forum for the IBuySpy Workshop. Because the product functionality and
source code of the two applications had diverged so significantly, my intent was to try and keep the

7

An Inside Look at the Evolution of DotNetNuke

05_595636 ch01.qxd 5/10/05 10:06 PM Page 7

Forum posts for the two applications separate; providing both communities the means to support their
membership. I certainly did not have high hopes that my e-mail request was even going to be read —
let alone granted. But to my surprise, I received a positive response from none other than Rob Howard
(an ASP.NET icon), which proved to be a great introduction to a long-term partnership with Microsoft.
Rob created the forum and even went a step further to add a link to the Source Download page of the
www.asp.net site, an event that would ultimately drive a huge amount of traffic to the emerging
IBuySpy Workshop community.

There are a number of reasons why the IBuySpy Workshop became so immediately popular when it was
released in early 2003. The obvious reason is because the base application contained a huge number of
enhancements over the IBuySpy Portal application that people could immediately leverage to build
more powerful web sites. From a community perspective, the open source project provided a central
management authority, which was dedicated to the ongoing growth and support of the application
framework; a factor that was definitely lacking in the original IBuySpy Portal community. This concept
of open source on the Microsoft platform attracted many developers; some with pure philosophical
intentions, and others who viewed the application as a vehicle to further their own revenue-generating
interests. Yet another factor, which I think is often overlooked, relates to the programming language on
which the project was based. With the release of the .NET Framework 1.0, Microsoft had spent a lot of
energy promoting the benefits of the new C# programming language. The C# language was intended to
provide a migration path for C++ developers as well as a means to entice Java developers working on
other platforms to switch. This left the Visual Basic and ASP 3.0 developer communities feeling neglected
and somewhat unappreciated. The IBuySpy Workshop, with its core framework in VB.NET, provided
an essential community ecosystem where legacy VB developers could interact, learn, and share.

In late February 2003, the lack of sleep, family priorities, and community demands finally came to a
head and I decided that I should reach out for help. I contacted a former employer and mentor, Kent
Alstad, with my dilemma and we spent a few lengthy telephone calls brainstorming possible outcomes.
However, my personal stress level at the time and my urgency to change direction on the project ulti-
mately caused me to move too fast and with more aggression than I should have. I announced that the
IBuySpy Workshop would immediately become a subscription service where developers would need to
pay a monthly fee in order to get access to the latest source code. From a personal perspective the intent
was to generate enough revenue that I could leave my day job and focus my full energy on the manage-
ment of the open source project. And with 2000 registered users, a subscription service seemed like a
viable model (see Figure 1-5).

However, the true philosophy of the open source model immediately came to light and I had to face the
wrath of a scorned community. Among other things I was accused of misleading the community, lying
about the open source nature of the project, and letting my personal greed cloud my vision. For every
one supporter of my decision there were 10 more who publicly crucified me as the evil incarnate.
Luckily for me Kent had a trusted work associate named Andy Baron, a senior consultant at MCW
Technologies and a Microsoft Most Valuable Professional since 1995, who has incredible wisdom when it
comes to the Microsoft development community. Andy helped me craft a public apology message (see
Figure 1-6), which managed to appease the community while at the same time restore the IBuySpy
Workshop to full open source status.

8

Chapter 1

05_595636 ch01.qxd 5/10/05 10:06 PM Page 8

Figure 1-5

Coincidentally, the political nightmare I created in the IBuySpy Workshop Forum with my subscription
announcement resulted in some direct attention from the Microsoft ASP.NET product team (the main-
tainers of the www.asp.net site). Still trying to recover from the damage I had incurred, I received an
e-mail from none other than Scott Guthrie (co-founder of the Microsoft ASP.NET Team), asking me to
reexamine my decision on the subscription model and making suggestions on how the project could
continue as a free, open source venture. It seemed that Microsoft was protective of its evolving commu-
nity and did not want to see the progress in this area splinter and dissolve just as it seemed to be gaining

9

An Inside Look at the Evolution of DotNetNuke

05_595636 ch01.qxd 5/10/05 10:06 PM Page 9

momentum. Scott Guthrie made no promises at this point but he did open a direct dialogue that ulti-
mately led to some fundamental discussions on sponsorship and collaboration. In fact, this initial e-mail
led to a number of telephone conversations and ultimately an invitation to Redmond to discuss the
future of the IBuySpy Workshop.

Figure 1-6

I still remember the combination of nerves and excitement as I drove from my home in Abbotsford,
British Columbia to the Microsoft head office in Redmond, Washington (about a three-hour trek). I really
did not know what to expect and I had tried to strategize all possible angles. Essentially all of my plan-
ning turned out to be moot — my meeting with Scott Guthrie turned out to be far more laid back and
transparent than I could have ever imagined. Scott took me to his unassuming office and we spent the
next three hours brainstorming ideas of how the IBuySpy Workshop fit into the current ASP.NET land-
scape. Much of this centered on the evolving vision of ASP.NET 2.0 — an area in which I had little or no
knowledge prior to the meeting (the Whidbey Alpha had not even been released at this point).

At the beginning of the meeting, Scott had me demo the current version of the IBuySpy Workshop,
explaining its key features and benefits. We also discussed the long-term goals of the project as well as
my proposed roadmap for future enhancements. Scott’s knowledge of both the technical and community
aspects of the ASP.NET platform really amazed me — I guess that’s why he is the undisputed Father of
ASP.NET. In hindsight I can hardly believe my good fortune to have received three dedicated hours of
his time to discuss the project — it really changed my “ivory tower” perception of Microsoft and forged
a strong relationship for future collaboration.

Upon leaving Redmond, I had to stifle my excitement as I realized that, regardless of the direct interac-
tion with Microsoft, I personally was still in the exact same situation as before the subscription model
announcement. Since the subscription model had failed to generate the much-needed revenue that
would have allowed me to devote 100% of my time to the project, I was forced to examine other possible

10

Chapter 1

05_595636 ch01.qxd 5/10/05 10:06 PM Page 10

alternatives. There had been a number of suggestions from the community and the concept that seemed
to have the most potential was related to web hosting.

In these early stages, there were very few economical Microsoft Windows hosting options available that
offered a SQL Server database — a fundamental requirement for running the IBuySpy Workshop appli-
cation. Coincidentally, I had recently struck up a relationship with an individual from New Jersey who
was very active in the IBuySpy Workshop forums on www.asp.net. This individual had a solid back-
ground in web hosting and proposed a partnership whereby he would manage the web hosting infras-
tructure and I would continue to enhance the application and drive traffic to the business. Initially, a lot
of community members signed up for this service; some because of the low-cost hosting option, others
because they were looking for a way to support the open source project. It soon became obvious that the
costs to build and support the infrastructure were consuming the majority of the revenue generated.
And over time the amount of effort to support the growing client base became more intense. Eventually
it came to a point where it was intimated that my contributions to the web hosting business were not
substantial enough to justify the current partnership structure. I was informed that the partnership
should be dissolved. This is where things got complicated because there had never been any formal
agreement signed by either party to initiate the partnership. Without documentation, it made the negoti-
ation for a fair settlement difficult and resulted in some bad feelings on both sides. This was unfortunate
because I think the relationship was formed with the best intentions, but the demands of the business
had resulted in a poor outcome. In any case, this ordeal was an important lesson I needed to learn;
regardless of the open source nature of the project, it was imperative to have all contractually binding
items properly documented.

One of the topics that Scott Guthrie and I discussed in our early conversations was the issue of product
branding. IBuySpy Workshop had achieved its early goals of providing a public reference to the IBuySpy
Portal community. This had resulted in an influx of ASP.NET developers who were familiar with the
IBuySpy Portal application and were interested in this new open source concept. But as the code bases
diverged there was a need for a new project identity — a unique brand that would differentiate the
community and provide the mechanism for building an internationally recognized ecosystem. Research
of competing portal applications on other platforms revealed a very strong tendency toward the
“nuke” slogan.

The “nuke” slogan had originally been coined by Francisco Burzi of PHP-Nuke fame (the oft-disputed
pioneer of open source portal applications). Over the years, a variety of other projects had adopted the
slogan as well; so many that the term had obtained industry recognition in the portal application genre.
To my surprise a WHOIS search revealed that dotnetnuke.com, .net, and .org had not been registered
and, in my opinion, seemed to be the perfect identity for the project. Again emphasizing the bare bones
resources under which the project was initiated, my credit card transaction to register the three domain
names was denied and I was only able to register dotnetnuke.com (in the long run an embarrassing and
contentious issue, as the .net and .org domain names were immediately registered by other individuals).
Equally as spontaneous, I did an Internet search for images containing the word “nuke” and located a
three-dimensional graphic of a circular gear with a nuclear symbol embossed on it. Contacting the
owner of the site, I was given permission to use the image (it was in fact, simply one of many public
domain images they were using for a fictitious store front demonstration). A new project identity was
born — Version 1.0.5 of the IBuySpy Workshop was rebranded as DotNetNuke, which the community
immediately abbreviated to DNN for simplicity (see Figure 1-7).

11

An Inside Look at the Evolution of DotNetNuke

05_595636 ch01.qxd 5/10/05 10:06 PM Page 11

Figure 1-7

A secondary issue that had not been addressed during the early stages of the project was licensing. The
original IBuySpy Portal had been released under a very liberal Microsoft EULA license, which allowed
for unrestricted usage, modification, and distribution. However, the code base had undergone such a
major transformation, it could hardly be compared with its predecessor. Therefore, when the IBuySpy
Workshop application was released I had not included the original Microsoft EULA; nor had I included
any copyright or license of my own. Essentially this meant that the application was in the public domain.
This is certainly not the most accepted approach to an open source project and eventually some of the
more legal-savvy community members brought the issue to a head. I was forced to take a hard look at
open source licensing models to determine which license was most appropriate to the project.

In stark contrast to the spontaneous approach taken to finding a project identity, the licensing issue had
much deeper ramifications. Had I not performed extensive research on this subject, I would have likely
chosen a GPL license because it seemed to dominate the vast majority of open source projects in exis-
tence. However, digging beneath the surface, I quickly realized that the GPL did not seem to be a good
candidate for my objectives of allowing DotNetNuke to be used in both commercial and non-commercial
environments. Ultimately, the selection of a license for an open source project is largely dependent upon
your business model, your product architecture, and understanding who owns the intellectual property
in your application. The combination of these factors prompted me to take a hard look at the open
source licensing options available.

If you have not researched open source software, you would be surprised at the major differences
between the most popular open source licensing models. It is true that these licenses all meet the stan-
dards of the Open Source Definition, a set of guidelines managed by the Open Source Initiative (OSI) at
www.open-source.org. These principles include the right to use open source software for any purpose,
the right to make and distribute copies, the right to create and distribute derivative works, the right to
access and use source code, and the right to combine open source and other software. With such funda-
mental rights shared between all open source licenses it probably makes you wonder why there is need
for more than one license at all. Well, the reason is because each license has the ability to impose addi-
tional rights or restrictions on top of these base principles. The additional rights and restrictions have
the effect of altering the license so that it meets the specific objectives of each project. Because it is gener-
ally bad practice to create brand new licenses (based on the fact that the existing licenses have gained

12

Chapter 1

05_595636 ch01.qxd 5/10/05 10:06 PM Page 12

industry acceptance as well as a proven track record), people generally gravitate toward either a GPL or
BSD license.

The GPL (or GNU Public License) was created in 1989 by Richard Stallman, founder of the Free Software
Foundation. The GPL is what is now known as a “copyleft” license, a term coined based on its contro-
versial reciprocity clause. Essentially this clause stipulates that you are allowed to use the software on
condition that any derivative works that you create from it and distribute must be licensed to all under
the same license. This is intended to ensure that the software and any enhancements to it remain in the
public domain for everyone to share. While this is a great humanitarian goal, it seriously restricts the
use of the software in a commercial environment.

The BSD (or Berkeley Software Distribution) was created by the University of California and was
designed to permit the free use, modification, and distribution of software without any return obligation
whatsoever on the part of the community. The BSD is essentially a “copyright” license, meaning that you
are free to use the software on condition that you retain the copyright notice in all copies or derivative
works. The BSD is also known as an “academic” license because it provides the highest degree of intel-
lectual property sharing.

Ultimately I settled on a standard BSD license for DotNetNuke; a license that allows the maximum
licensing freedom in both commercial and non-commercial environments — with only minimal restric-
tions to preserve the copyright of the project. The change in license went widely unnoticed by the
community because it did not impose any additional restrictions on usage or distribution. However,
it was a fundamental milestone in establishing DotNetNuke as a true open source project.

DotNetNuke - http://www.dotnetnuke.com
Copyright (c) 2002-2005
by Shaun Walker (sales@perpetualmotion.ca) of Perpetual Motion Interactive Systems
Inc. (http://www.perpetualmotion.ca)

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The next major milestone in the project’s open source evolution occurred in the summer of 2002. Up
until this point I had been acting as the sole maintainer of the DotNetNuke code base; a task that was
consuming 110% of my free time as I feverishly fixed bugs and enhanced the framework based on com-
munity feedback. Yet still I felt more like a bottleneck than a provider, in spite of the fact I was churning
out at least one significant release every month leading up to this point. The more active community

13

An Inside Look at the Evolution of DotNetNuke

05_595636 ch01.qxd 5/10/05 10:06 PM Page 13

members were becoming restless due to a lack of direct input into the progress of the project. In fact,
a small faction of these members even went so far as to create their own hybrid or “fork” of the
DotNetNuke code base, which attempted to forge ahead and add features at a more aggressive pace
than I was capable of on my own. These were very challenging times from a political standpoint because
I was eventually forced to confront all of these issues in a direct and public manner — flexing my
“Benevolent Dictator” muscles for the first time; an act I was not the least bit comfortable performing.
Luckily for me, I had a number of very loyal and trustworthy community members who supported my
position and ultimately provided the backing to form a very strong and committed Core Team.

As a result of the single-threaded issues I mentioned earlier, most successful open source projects are
comprised of a number of community volunteers who earn their positions of authority within the com-
munity based on their specific expertise or community support activities. This is known as a meritoc-
racy; a term which means that an individual’s influence is directly proportional to the ability that the
individual demonstrates within the project. It’s a well-observed fact that individuals with more experi-
ence and skills will have less time to devote to volunteer activities; however, their minimal contributions
prove to be incredibly valuable. Similarly, individuals with less experience may be able to invest more
time but may only be capable of performing the more repetitive, menial tasks. Building a healthy bal-
ance of these two roles is exactly what is required in every successful open source project; and in fact, is
one of the more challenging items to achieve from a management perspective.

The original DotNetNuke Core Team was selected based on their participation and dedication to the
DotNetNuke project in the months leading up to the team’s formation. In most cases this was solely
based on an individual’s public image and reputation that had been established in the DotNetNuke
Forum on the www.asp.net web site. And in fact, in these early stages, the online persona of each indi-
vidual proved to be a good indicator of the specific skills they could bring to the project. Some members
were highly skilled architects, others were seasoned developers, yet others were better at discussing
functionality from an end-user perspective and providing quality support to their community peers.

In order to establish some basic structure for the newly formed Core Team, I attempted to summarize
some basic project guidelines. My initial efforts combined some of the best Extreme Programming (XP)
rules with the principles of other successful open source projects. This became the basis of the
DotNetNuke Manifest document:

❑ Development is a Team Effort: The whole is exponentially greater than the sum of its parts.
Large-scale open source projects are only viable if a large enough community of highly skilled
developers can be amassed to attack a problem. Treating your users as co-developers is your
most effective option for rapid code improvement and effective debugging.

❑ Build the right product before you build the product right: Focus should be directed at under-
standing and implementing the high-level business requirements before attempting to construct
the perfect technical architecture. Listen to your customers.

❑ Incremental Development: Every software product has infinite growth potential if managed cor-
rectly. Functionality should be added in incremental units rather than attempting a monolithic
implementation. Release often but with a level of quality that instills confidence.

❑ Law of Diminishing Return: The majority of the effort should be invested in implementing fea-
tures that have the most benefit and widest general usage by the community.

DotNetNuke version 1.0.10 was the proving grounds for the original Core Team. The idea was to estab-
lish the infrastructure to support disconnected team development by working on a stabilization release

14

Chapter 1

05_595636 ch01.qxd 5/10/05 10:06 PM Page 14

of the current product. A lot of debate went into the selection of the appropriate source control system
because, ironically enough, many of the Core Team had never worked with a formal source control pro-
cess in the past (a fact that certainly emphasized the varied professional background of the Core Team
members). The debate centered on whether to use a CVS or VSS model.

CVS is a source control system that is very popular in the open source world that allows developers to
work in an unrestricted manner on their local project files and handles any conflicts between versions
when you attempt to commit your changes to the central repository. Visual SourceSafe (VSS) is a
Microsoft source control system that is supported by the Microsoft development tool suite, which
requires developers to explicitly lock project files before making modifications to prevent version con-
flicts. Ultimately, the familiarity with the Microsoft model won out and we decided to use the free
WorkSpaces service on the GotDotNet web site (a new developer community site supported by
Microsoft). GotDotNet also provided a simplistic Bug Tracker application that provided us with a means
to manage the tracking of issues and enhancement requests. With these infrastructure components in
place we were able to focus on the stabilization of the application; correcting known defects and adding
some minor usability enhancements. It was during this time that Scott Willhite stepped forward to
assume a greater role of responsibility in the project; assisting in management activities, communication,
prioritization, and scheduling.

A significant enhancement that was introduced in this stabilization release came from a third party that
had contacted me with some very specific enhancements they had implemented and wished to con-
tribute. The University of Texas at El Paso had done extensive work making the DotNetNuke applica-
tion compliant with the guidelines of the American Disabilities Association (ADA) and Section 508 of the
United States Rehabilitation Act. The United States government had made compliancy mandatory for
most public organizations; therefore, this was a great enhancement for DotNetNuke because it allowed
the application to be used in government, educational, and military scenarios. Bruce Hopkins became
the Core Team owner of this item in these early stages; a role that required a great deal of patience as the
rest of the team came to grips with the new concept.

Establishing and managing a team was no small challenge. On one hand there were the technical chal-
lenges of allowing multiple team members, all in different geographic regions, to communicate and col-
laborate in a cost-effective, secure environment. Certainly this would have never been possible without
the Internet and its vast array of online tools. On the other hand there was the challenge of identifying
different personality types and channeling them into areas where they would be most effective. Because
there are limited financial motivators in the open source model, people must rely on more basic incen-
tives to justify their volunteer efforts. Generally this leads to a paradigm where contributions to the pro-
ject become the de facto channel for building a reputation within the community — a primary
motivator in any meritocracy. As a result of working with the team, it soon became obvious that there
were two extremes in this area — those who would selflessly sacrifice all of their free time (often to their
own detriment) to the open source project, and those who would invest the minimal effort and expect
the maximum reward. As the creator and maintainer of the project it was my duty to remain objective
and put the interests of the community first. This often caused me to become frustrated with the behav-
ior of specific individuals, but in nearly all cases these issues could be resolved without introducing any
hard feelings on either side. This was true in all cases except one.

Early in the project history I had been approached by an individual from Germany with a request to
maintain a localized DotNetNuke site for the German community. I was certainly not naïve to the dan-
gers of forking at this point and I told him that it would be fine so long as the site stayed consistent with
the official source code base, which was under my jurisdiction. This was agreed upon and in the coming

15

An Inside Look at the Evolution of DotNetNuke

05_595636 ch01.qxd 5/10/05 10:06 PM Page 15

months I would have periodic communication with this individual regarding his localization efforts.
However, as time wore on, he became critical of the manner in which the project was being managed; in
particular the sole maintainer aspect, and began to voice his disapproval in the public Forum. There was
a group who believed that there should be greater degree of transparency in the project; that developers
should be able to get access to the latest development source code at anytime, and that the maintenance
of the application should be conducted by a team rather than an individual. He was able to convince a
number of community members to collaborate with him on a modified version of DotNetNuke; a ver-
sion that integrated a number of the more popular community enhancements available, and called it
DotNetNuke XXL.

Now I have to admit that much of this occurred due to my own inability to respond quickly and form a
Core Team. In addition, I was not providing adequate feedback to the community regarding my goals
and objectives for the future of the project. The reality is, the background management tasks of creating
the DotNetNuke Core Team and managing the myriad other issues had undermined my ability to
deliver source code enhancements and support to the. The combination of these factors resulted in an
unpleasant situation; one that I should have mitigated sooner but was afraid to act upon due to the
fragility of the newly formed community. And you also need to remember that the creator of the XXL
variant had broken no license agreement by creating a fork; it was completely legal based on the free-
dom of the BSD open source license.

Eventually the issue came to a head when members of the XXL group began promoting their full source
code hybrid in the DotNetNuke Forum. Essentially piggy-backing on the primary promotion channel for
the DotNetNuke project, they were able to convince many people to switch to the XXL code base. This
had some very bad consequences for the DotNetNuke community. Mainly it threatened to splinter the
emerging community on territorial boundaries; an event I wanted to avoid at all costs. This situation
was the closest attempt of project hijacking that I can realistically imagine. The DotNetNuke XXL fork
seemed to be fixated on becoming the official version of DotNetNuke and assuming control of the future
project roadmap. The only saving grace was that I personally managed the DotNetNuke infrastructure
and therefore had some influence over key aspects of the open source environment.

In searching for an effective mechanism to protect the integrity of the community and prevent the XXL
fork from gaining momentum, some basic business fundamentals came into play. Any product or service
is only as successful as its promotion or marketing channel. The DotNetNuke Forum on the
www.asp.net web site was the primary communication hub to the DotNetNuke community. Therefore
it was not difficult to realize that restricting discussion on XXL in the Forum was the simplest method to
mitigate its growth. In probably the most aggressive political move I have ever been forced to make, I
introduced some bold changes to the DotNetNuke project. I established some guidelines for Core Team
conduct that included, among other things, restrictions on promoting competing open source hybrids of
the DotNetNuke application. I also posted some policies on the DotNetNuke Forum that emphasized
that the Forum was dedicated solely to the discussion of the official DotNetNuke application and that
discussion of third-party commercial or open source products was strictly forbidden. This was an espe-
cially difficult decision to make from a moral standpoint because I was well aware that the DotNetNuke
application had been introduced to the community via the IBuySpy Portal Forum. Nonetheless, the com-
bination of these two announcements resulted in both the resignation of the XXL project leader from the
Core Team as well as the end of discussion of the XXL fork in the DotNetNuke Forum.

The unfortunate side effect, about which I had been cautioning members of the community for weeks,
was that users who had upgraded to the XXL fork were effectively left on an evolutionary dead-end —
a product version with no support mechanism or promise of future upgrades. This is because many of

16

Chapter 1

05_595636 ch01.qxd 5/10/05 10:06 PM Page 16

the XXL enhancements were never going to be integrated into the official DotNetNuke code base (either
due to design limitations or inapplicability to the general public). This situation, as unpleasant as it may
have been for those caught on the dead-end side of the equation, was a real educational experience for
the community in general as they began to understand the longer term and deeper implications of open
source project philosophy. In general, the community feedback was positive to the project changes, with
only occasional flare ups in the weeks following. In addition, the Core Team seemed to gel more as a
result of these decisions because it provided some much-needed policies on conduct, loyalty, and dedi-
cation, as well a concrete example of how inappropriate behavior would be penalized.

Emerging from the XXL dilemma, I realized that I needed to establish some legal protection for the
long-term preservation of the project. Because standard copyright and the BSD license offered no real
insurance from third-party threats, I began to explore intellectual property law in greater detail. After
much research and legal advice, I decided that the best option was to apply for a trademark for the
DotNetNuke brand name. Registering a trademark protects a project’s name or logo, which is often a
project’s most valuable asset. Once the trademark was approved it would mean that although an indi-
vidual or company could still create a fork of the application, they legally could not refer to it by the
DotNetNuke trademark name. This appeared to be an important distinction so I proceeded with trade-
mark registration in Canada (since this is the country in which Perpetual Motion Interactive Systems Inc.
is incorporated).

I must admit the entire trademark approval process was quite an educational experience. Before you can
register your trademark you need to define a category and description of your wares and/or services.
This can be challenging, although most trademark agencies now provide public access to their database
where you can browse for similar items that have been approved in the past. You pay your processing
fee when you submit the initial application, but the trademark agency has the right to reject your appli-
cation for any number of reasons; whereby, you need to modify your application and submit it again.
Each iteration can take a couple of months, so patience is indeed a requirement. Once the trademark is
accepted it must be published in a public trademark journal for a specified amount of time, providing
third parties the opportunity to contest the trademark before it is approved. If it makes it through this
final stage, you can pay your registration fee for the trademark to become official. To emphasize the
lengthy process involved, the DotNetNuke trademark was initially submitted on October 9, 2003 and
was finally approved on November 15, 2004 (TMA625,364).

In August 2003, I finally came to terms on an agreement with Microsoft regarding a sponsorship
proposal for the DotNetNuke project. In a nutshell, Microsoft wanted DotNetNuke to be enhanced
in a number of key areas; the intent being to use the open source project as a means of demonstrating
the strengths of the ASP.NET platform. Because these enhancements were completely congruent
with the future goals of the project, there was little negative consequence from a technical perspective.
In return for implementing the enhancements, Microsoft would provide a number of sponsorship
benefits to the project including web hosting for the www.dotnetnuke.com web site, weekly meetings
with an ASP.NET Team representative (Rob Howard), continued promotion via the www.asp.net web
site, and more direct access to Microsoft resources for mentoring and guidance. Please note that it
took five months for this sponsorship proposal to come together, which demonstrates the patience and
perseverance required to collaborate with such an influential partner as Microsoft. Nonetheless, this
was potentially a one-time offer and at such a critical stage in the project evolution, it seemed too impor-
tant to ignore.

An interesting perception that most people have in the IT industry is that Microsoft is morally against
the entire open source phenomenon. In my opinion, this is far from the actual truth — and the reality is

17

An Inside Look at the Evolution of DotNetNuke

05_595636 ch01.qxd 5/10/05 10:06 PM Page 17

so much more simplistic. Like any other business that is trying to enhance its market position, Microsoft
is merely concerned about competition. This is nothing new. In the past, Microsoft faced competitive
challenges from many other sources: companies, individuals, and governments. However, the current
environment makes it much more emotional and newsworthy to suggest that Microsoft is pitted against
a grass roots community movement rather than a business or legal concern. So in my opinion, it is
merely a coincidence that the only real competition facing Microsoft at this point in time is coming from
the open source development community. And there is no doubt it will take some time and effort for
Microsoft to adapt to the changing landscape. But the chances are probably high that Microsoft will
eventually embrace open source to some degree in order to remain competitive.

When it comes to DotNetNuke, many people probably question why Microsoft would be interested in
assisting an open source project for which they receive no direct benefit. And it may be perplexing why
they would sponsor a product that competes to some degree with several of their own commercial appli-
cations. But you do not have to look much further than the obvious indirect benefits to see why this rela-
tionship has tremendous value. First and foremost, at this point in time the DotNetNuke application is
only designed for use on the Microsoft platform. This means that in order to use DotNetNuke you must
have valid licenses for a number of Microsoft infrastructure components (Windows operating system,
database server, and so on). So this provides the financial value. In addition, DotNetNuke promotes the
benefits of the .NET Framework and encourages developers to migrate to this new development plat-
form. This provides the educational value. Finally, it cultivates an active and passionate community —
a network of loyal supporters who are motivated to leverage and promote Microsoft technology on an
international scale. This provides the marketing value.

So in September 2003, with the assistance of the newly formed Core Team, we embarked on an ambi-
tious mission to implement the enhancements suggested by Microsoft. The problem at this point was
that in addition to the Microsoft enhancements, there were some critical community enhancements,
which I ultimately perceived as an even higher priority if the project should hope to grow to the next
level. So the scope of the enhancement project began to snowball, and estimated release dates began to
slip. The quality of the release code was also considered to be so crucial a factor that early beta packages
were not deemed worthy of distribution. Ultimately the code base evolved so much that there was little
question the next release would need to be labeled version 2.0. During this phase of internal develop-
ment, some members of the Core Team did an outstanding job of supporting the 1.x community and
generating excitement about the next major release. This was critical in keeping the DotNetNuke com-
munity engaged and committed to the evolving project.

A number of excellent community enhancements for the DotNetNuke 1.0 platform also emerged during
this stage. This sparked a very active third-party reseller and support community; establishing yet
another essential factor in any largely successful open source project. Unfortunately at this point the
underlying architecture of the DotNetNuke application was not particularly extensible, which made the
third-party enhancements susceptible to upgrade complications and somewhat challenging to integrate
for end users. As a Core Team we recognized this limitation and focused on full modularity as a guiding
principle for all future enhancements.

Modularity is an architecture principle that basically involves the creation of well-defined interfaces for
the purpose of extending an application. The goal of any framework should be to provide interfaces in
all areas that are likely to require customization based on business requirements or personalization
based on individuality. DotNetNuke provides extensibility in the area of modules, skins, templates, data
providers, and localization. And DotNetNuke typically goes one step beyond defining the basic inter-
face; it actually provides the full spectrum of related resource services including creation, packaging,

18

Chapter 1

05_595636 ch01.qxd 5/10/05 10:06 PM Page 18

distribution, and installation. With all of these services available, it makes it extremely easy for develop-
ers to build and share application extensions with other members of the community.

One of the benefits of working on an open source project is the fact that there is a very high priority
placed on creating the optimal solution or architecture. I think it was Bill Gates who promoted the con-
cept of “magical software” and it is certainly a key aspiration in many open source projects. This goal
often results in more preliminary analysis and design, which tends to elongate the schedule but also
results in a more extensible and adaptable architecture. This differs from traditional application develop-
ment, which often suffers from time and budget constraints, resulting in shortcuts, poor design deci-
sions, and delivery of functionality before it is has been validated. Another related benefit is that the
developers of open source software also represent a portion of its overall user community, meaning they
actually “eat their own dog food,” so to speak. This is really critical when it comes to understanding the
business requirements under which the application needs to operate. Far too often you will find com-
mercial vendors that build their software in a virtual vacuum; never experiencing the fundamental
application use cases in a real-world environment.

One of the challenges in allowing the Core Team to work together on the DotNetNuke application was
the lack of high-quality infrastructure tools. Probably the most fundamental elements from a software
development standpoint were the need for a reliable source code control system and issue management
system. Because the project had little to no financial resources to draw upon, we were forced to use
whatever free services were available in the open source community. And although some of these ser-
vices are leveraged successfully by other open source projects, the performance, management, and disas-
ter recovery aspects are sorely lacking. This led to a decision to approach some of the more successful
commercial vendors in these areas with requests for pro-bono software licenses. Surprisingly, these ven-
dors were more than happy to assist the DotNetNuke open source project — in exchange for some min-
imal sponsorship recognition. This model has ultimately been carried on in other project areas to acquire
the professional infrastructure, development tools, and services necessary to support our growing
organization.

As we worked through the enhancements for the DotNetNuke 2.0 project, a number of Core Team mem-
bers gained considerable respect within the project based on their high level of commitment, unselfish
behavior, and expert development skills. Joe Brinkman, Dan Caron, Scott McCulloch, and Geert Veenstra
sacrificed a heap of personal time and energy to improve the DotNetNuke open source project. And the
important thing to realize is that they did so because they wanted to help others and make a difference,
not because of self-serving agendas or premeditated expectations. The satisfaction of working with other
highly talented individuals in an open, collaborative environment is reward enough for some develop-
ers. And it is this particular aspect of open source development that continues to confound and amaze
people as time goes on.

In October 2003, there was a Microsoft Professional Developers Conference (PDC) in Los Angeles,
California. The PDC is the premier software development spectacle for the Microsoft platform; an event
that only occurs every two years. About a month prior to the event, I was contacted by Cory Isakson, a
developer on the Rainbow Portal open source project, who informed me that “Open Source Portals” had
been nominated as a category for a “Birds of Feather” session at the event. I posted the details in the
DotNetNuke Forum and soon the item had collected enough community votes that it was approved as an
official BOF session. This provided a great opportunity to meet with DotNetNuke enthusiasts and critics
from all over the globe. It also provided a great networking opportunity to chat with the most influential
commercial software vendors in the .NET development space (contacts made with SourceGear and
MaximumASP at this event proved to be very important to DotNetNuke as time would tell).

19

An Inside Look at the Evolution of DotNetNuke

05_595636 ch01.qxd 5/10/05 10:06 PM Page 19

In January 2004 another interesting dilemma presented itself. I received an e-mail from an external party,
a Web Application Security Specialist, who claimed to have discovered a severe vulnerability in the
DotNetNuke application (version 1.0). Upon further research I confirmed that the security hole was
indeed valid and immediately called an emergency meeting of the more trusted Core Team members
to determine the most appropriate course of action. At this point we were fully focused on the
DotNetNuke 2.0 development project but also realized that it was our responsibility to serve and protect
the growing DotNetNuke 1.0 community. From a technical perspective, the patch for the vulnerability
proved to be a simple code modification. The more challenging problem was related to communicating
the details of the security issue to the community. On the one hand we needed the community to under-
stand the severity of the issue so that they would be motivated to patch their applications. On the other
hand, we did not want to cause widespread alarm that could lead to a public perception that
DotNetNuke was an insecure platform. Exposing too many details of the vulnerability would be an
open invitation for hackers to try and exploit DotNetNuke web sites; but revealing too few details
would downplay the severity. And the fact that the project is open source meant that the magnitude of
the problem was amplified. Traditional software products have the benefit of tracking and identifying
users through restrictive licensing policies. Open source projects have licenses that allow for free redis-
tribution; which means the maintainer of the project has no way to track the actual usage of the applica-
tion and no way to directly contact all community members who are affected. The whole situation really
put security issues into perspective for me. It’s one thing to be an outsider, expressing your opinions on
how a software vendor should or should not react to critical security issues in their products. It’s quite
another thing to be an insider, stuck in the vicious dilemma between divulging too much or too little
information, knowing full well that both options have the potential to put your customers at even
greater risk. Ultimately, we created a new release version and issued a general security alert that was
sent directly to all registered users of the DotNetNuke application by e-mail and posted in the
DotNetNuke Forum on www.asp.net.

Subject: DotNetNuke Security Alert

Yesterday we became aware of a security vulnerability in DotNetNuke.

It is the immediate recommendation of the DotNetNuke Core Team that all
users of DotNetNuke based systems download and install this security patch
as soon as possible. As part of our standard security policy, no further
detailed information regarding the nature of the exploit will be provided to
the general public.

This email provides the steps to immediately fix existing sites and mitigate
the potential for a malicious attack.

Who is vulnerable?

-- Any version of DotNetNuke from version 1.0.6 to 1.0.10d

What is the vulnerability?

A malicious user can anonymously download files from the server. This is not
the same download security issue which has been well documented in the past
whereby an anonymous user can gain access to files in the /Portals directory
if they know the exact URL. This particular exploit bypasses the file
security machanism of the IIS server completely and allows a malicious user
to download files with protected mappings (ie. *.aspx).

20

Chapter 1

05_595636 ch01.qxd 5/10/05 10:06 PM Page 20

The vulnerability specifically *does not* enable the following actions:

-- A hacker *cannot* take over the server (e.g. it does not allow hacker
code to be executed on the server)

How to fix the vulnerability?

For Users:

{ Instructions on where to download the latest release and how to install }

For Developers:

{ Instructions with actual source code snippets for developers who had diverged
from the official DotNetNuke code base and were therefore unable to apply a general
release patch }

Please note that this public service announcement demonstrates the
professional responsibility of the Core Team to treat all possible security
exploits as serious and respond in a timely and decisive manner.

We sincerely apologize for the inconvenience that this has caused.

Thank you, we appreciate your support...

DotNetNuke - The Web of the Future

The security dilemma brings to light another often misunderstood paradigm when it comes to open
source projects. Most open source projects have a license that explicitly states that there is no support or
warranty of any kind for users of the application. And while this may be true from a purely legal stand-
point, it does not mean that the maintainer of the open source application can ignore the needs of the
community when issues arise. The fact is, if the maintainer did not accept responsibility for the applica-
tion, the users would quickly lose trust and the community would dissolve. This implicit trust relation-
ship is what all successful open source communities are based upon. So in reality, the open source
license acts as little more than a waiver of direct liability for the maintainer. The DotNetNuke project cer-
tainly conforms to this model because we take on the responsibility to ensure that all users of the appli-
cation are never left on an evolutionary dead-end and security issues are always dealt with in a
professional and expedient manner.

After six months of development, including a full month of public beta releases and community feed-
back, DotNetNuke 2.0 was released on March 23, 2004. This release was significant because it occurred
at VS Live! in San Francisco, California — a large-scale software development event sponsored by
Microsoft and Fawcette publications. Due to our strong working relationship with Microsoft, I was
invited to attend official press briefings conducted by the ASP.NET Team. Essentially this involved 6–8
private sessions with the leading press agencies (Fawcette, PC Magazine, Computer Wire, Ziff Davis,
and others) where I was able to summarize the DotNetNuke project, show them a short demonstration,
and answer their specific questions. The event proved to be spectacularly successful and resulted in a
surge of new traffic to the community (now totaling more than 40,000 registered users).

DotNetNuke 2.0 was a hit. We had successfully delivered a high quality release that encapsulated the
majority of the most requested product enhancements from the community. And we had done so in a

21

An Inside Look at the Evolution of DotNetNuke

05_595636 ch01.qxd 5/10/05 10:06 PM Page 21

manner that allowed for clean customization and extensibility. In particular the skinning solution in
DotNetNuke 2.0 achieved widespread critical acclaim.

In DotNetNuke 1.x the user interface of the application allowed for very little personalization; essen-
tially all DNN sites looked very much the same, a very negative restriction considering the highly cre-
ative environment of the World Wide Web. DotNetNuke 2.0 removed this restriction and opened up the
application to a whole new group of stakeholders — web designers. As the popularity of portal applica-
tions had increased in recent years, the ability for web designers to create rich, graphical user interfaces
had diminished significantly. This is because the majority of portal applications were based on platforms
that did not allow for clear separation between form and function, or were architected by developers
who had very little understanding of the creative needs of web designers. DotNetNuke 2.0 focused on
this problem and implemented a solution where the portal environment and creative design process
could be developed independently and then combined to produce a stunningly harmonious end-user
experience. The process was not complicated and did not require the use of custom tools or methodolo-
gies. It did not take very long before we began to see DotNetNuke sites with richly creative and highly
graphical layouts emerge — proving the effectiveness of the solution and creating a “can you top this”
community mentality for innovative portal designs.

DotNetNuke (DNN) Web Site
To demonstrate the effectiveness of the skinning solution, I commissioned a local web design company,
Circle Graphics, to create a compelling design for the www.dotnetnuke.com web site (see Figure 1-8).
As an open source project, I felt that I could get away with an unorthodox, somewhat aggressive site
design and I had been impressed by some of Circle Graphics’ futuristic, industrial concepts I had viewed
in the past. It turned out that the designer who had created these visuals had since moved on but was
willing to take on a small contract as a personal favor to the owner. He created a skin that included some
stunning 3-D imagery including the now infamous “nuke-gear” logo, circuit board, and plenty of
twisted metallic pipes and containers. The integration with the application worked flawlessly and the
community was wildly impressed with the stunning result. Coincidentally, the designer of the
DotNetNuke skin, Anson Vogt, has since gone on to bigger and better things, working with rapper
Eminem as Art Director — 3-D Animation on the critically acclaimed Mosh video.

One of the large-scale enhancements that Microsoft had insisted upon for DotNetNuke 2.0 also proved
to be very popular. The data access layer in DotNetNuke had been re-architected using an abstract fac-
tory model, which effectively allowed it to interface with any number of relational databases. Microsoft
had coined the term “provider model” and emphasized it as a key component in the future ASP.NET 2.0
framework. Therefore, getting a reference implementation of this pattern in use in ASP.NET 1.x had
plenty of positive educational benefits for Microsoft and DotNetNuke developers. DotNetNuke 2.0
included both a fully functional SQL Server and MS Access version, and the community soon stepped
forward with mySQL and Oracle implementations as well. Again the extensibility benefits of good
architecture were extremely obvious and demonstrated the direction we planned to pursue in all future
product development.

Upon review of the DotNetNuke 2.0 code base it was very obvious that the application bore very little
resemblance to the original IBuySpy Portal application. This was a good thing because it raised the bar
significantly in terms of n-tiered, object-oriented, enterprise-level software development. However, it
was also bad in some ways because it alienated some of the early DotNetNuke enthusiasts who were in

22

Chapter 1

05_595636 ch01.qxd 5/10/05 10:06 PM Page 22

fact “hobby programmers,” using the application more as a learning tool than a professional product.
This is an interesting paradigm to observe in many open source projects. In the early stages, the devel-
oper community drives the feature set and extensibility requirements which, in turn, results in a much
higher level of sophistication in terms of system architecture and design. However, as time goes on,
this can sometimes result in the application surpassing the technical capabilities of some of its early
adopters. DotNetNuke had ballooned from 15,000 lines of managed code to 46,000 lines of managed
code in a little over six months. The project was getting large enough that it required some serious
effort to understand its organizational structure, its dependencies, and its development patterns.

When researching the open source phenomenon, I found that there are a few fundamental details are
often ignored in favor of positive marketing rhetoric. I would like to take the opportunity to bring some
of these to the surface because they provide some additional insight into some of the issues we face in
the DotNetNuke project.

Figure 1-8

23

An Inside Look at the Evolution of DotNetNuke

05_595636 ch01.qxd 5/10/05 10:06 PM Page 23

The first myth surrounds the belief that open source projects basically have an unlimited resource pool
at their immediate disposal. While this may be true from a purely theoretical perspective, the reality is
you still require a dedicated management structure to ensure all of the resources are channeled in an effi-
cient and productive manner. An army of developers without some type of central management author-
ity will never consistently produce a cohesive application; and more likely, their efforts will result in
total chaos. As much as the concept is often despised by hard core programmers, dedicated management
is absolutely necessary to set expectations and goals, ensure product quality, mitigate risk, recognize crit-
ical dependencies, manage scope, and assume ultimate responsibility. You will find no successful open
source project that does not have an efficient and highly respected management team.

Further to the unlimited resourcing myth, there are in fact very few resources who become involved in
an open source project that possess the level of competency and communication skills required to earn a
highly trusted position in the meritocracy. More often, the resources who get involved are capable of
handling more consumer-oriented tasks such as testing, support, and minor defect corrections. And this
is not to say that these resources do not play a critical role in the success of the project; every focused
ounce of volunteer effort certainly helps sustain the health of the project. But my point is that there is
usually a relatively small group on most open source projects who are responsible for the larger scale
architectural enhancements.

Yet another myth is related to the belief that anyone can make a direct and immediate impact on an open
source project. While this may be true to some degree, you generally need to build a trusted reputation
within the community before you are granted any type of privilege. And there are very few individuals
who are ever awarded direct write access to the source code repository. Anyone has the ability to submit
a patch or enhancement suggestion; however, this does not mean it is guaranteed to be added to the
open source project code base. In fact, all submissions are rigorously peer reviewed by trusted resources,
and only when they have passed all validation criteria are they introduced to the source code repository.
From a control standpoint, this is not much different than a traditional software project. However, the
open source model does significantly alter this paradigm in the fact that everyone is able to review the
source code. As a result, the sheer volume of patches submitted to this process can be massive.

There are also some interesting interpretations of open source philosophy that occasionally result in dif-
ferences of opinion and, in the worst cases, all-out community revolts. This generally occurs because the
guidelines for open source are quite non-explicit and subjective. One particularly hot topic that relates to
DotNetNuke is related to source code access.

Some open source projects provide anonymous read-only access to the development source code base
at all times. This full transparency is appreciated by developers who want to stay abreast of the latest
development efforts — even if they are not trusted members of the inner project team. These developers
accept the fact that the development code may be in various stages of stability on any given day; yet
they appreciate the direct access to critical fixes or enhancements. Although this model does promote
more active external peer review it can often lead to a number of serious problems. If a developer
decides to use pre-release code in a production environment, they may find themselves maintaining an
insecure or unstable application. This can lead to a situation where the community is expected to sup-
port many hybrid variants rather than a consistent baseline application. Another issue that can happen
is that a developer who succumbs to personal motivations may be inclined to incorporate some of the
development enhancements into the current production version and release it as a new application ver-
sion. While the open source license may allow this, it seriously affects the ability for official project main-
tainer to support the community. It is the responsibility of the project maintainer to always ensure a
managed migration path from one version to the next. This model can only be supported if people are

24

Chapter 1

05_595636 ch01.qxd 5/10/05 10:06 PM Page 24

forced to use the official baseline releases offered by the project maintainer. Without these constants to
build from, upgrades become a manual effort and many users are left on evolutionary dead-ends. For
these reasons, DotNetNuke chooses to restrict anonymous read access to the development source code
repository. Instead we choose to issue periodic point releases that allow us to provide a consistent
upgrade mechanism as the project evolves.

Following the success of DotNetNuke 2.0 we focused on improving the stability and quality of the appli-
cation. Many production issues had been discovered after the release that we would have never antici-
pated during internal testing. As an application becomes more extensible, people find new ingenious
ways to apply it, which can often lead to unexpected results. We also integrated some key Roadmap
enhancements, which had already been developed in isolation by Core Team members. These enhance-
ments were actually quite advanced as they added a whole new level of professional features to the
DotNetNuke code base, transforming it into a viable enterprise portal application.

It was during this time that Dan Caron single-handedly made a significant impact on the project. Based
on his experience with other enterprise portals, he proceeded to add integrated exception handling and
event logging to the application. This added stability and “auditability”; two major factors in most pro-
fessional software products. He also added a complex, multithreaded scheduler to the application. The
Scheduler was not just a simple hard-coded implementation like I had seen in other ASP.NET projects,
but rather it was fully configurable via an administration user interface. This powerful new feature
could be used to run background housekeeping jobs as well as long-running tasks. With this in place,
the extensibility of the application improved yet again.

An interesting concern that came to our attention at this time was related to our dependence on external
components. In order to provide the most powerful application, we had leveraged a number of rich
third-party controls for their expert functionality. Because each of these controls was available under their
own open source license, they seemed to be a good fit for the DotNetNuke project. But the fact is, there
are some major risks to consider. Some open source licenses are viral in nature and have the potential to
alter the license of the application they are combined with. In addition, there is nothing that prevents a
third party from changing their licensing policy at any time. If this situation occurred, then it is possible
that all users of the application who reference the control could be in violation of the new license terms.
This is a fairly significant issue and certainly not something that can be taken lightly. Based on this
knowledge, we quickly came up with a strategy that was aimed at minimizing our dependency on third-
party components. We constructed a policy whereby we would always focus on building the functional-
ity ourselves before considering an external control. And in the cases where a component was too
elaborate to replicate, we would use a provider model, much like we had in the database layer, to
abstract the application from the control in such a way that it would allow for a plug-in replacement.
This strategy protects the community from external license changes and also provides some additional
extensibility for the application.

With the great publicity on the www.asp.net web site following VS Live! and the consistent release of
powerful new enhancements, the spring of 2004 brought a lot of traffic to the dotnetnuke.com commu-
nity web site. At this point, the site was very poorly organized and sparse on content due to a lack of
dedicated effort. Patrick Santry had been on the Core Team since its inception and his experience with
building web sites for the ASP.NET community became very valuable at this time. We managed to make
some fairly major changes to improve the site, but I soon realized that a dedicated resource would be
required to accomplish all of our goals. But without the funding to secure such a resource, many of the
plans had to unfortunately be shelved.

25

An Inside Look at the Evolution of DotNetNuke

05_595636 ch01.qxd 5/10/05 10:06 PM Page 25

The summer of 2004 was a restructuring period for DotNetNuke. Thirty new community members were
nominated for Core Team inclusion and the Core Team itself underwent a reorganization of sorts. The
team was divided into an Inner Team and an Outer Team. The Inner Team designation was reserved for
those original Core Team individuals who had demonstrated the most loyalty, commitment, and value
to the project over the past year. The Outer Team represented individuals who had earned recognition
for their community efforts and were given the opportunity to work toward Inner Team status. Among
other privileges, write access to the source code repository is the pinnacle of achievement in any source
code project, and members of both teams were awarded this distinction to varying degrees.

In addition to the restructuring, a set of Core Team guidelines was established that helped formulize
the expectations for team members. Prior to the creation of these guidelines it was difficult to penalize
non–performers because there were not objective criteria by which they could be judged. In addition to
the new recruits, a number of inactive members from the original team were retired; mostly to demon-
strate that Core Team inclusion was a privilege — not a right. The restructuring process also brought to
light several deficiencies in the management of intellectual property and confidentiality among team
members. As a result, all team members were required to sign a retroactive nondisclosure agreement as
well as an intellectual property contribution agreement. All of the items exemplified the fact that the pro-
ject had graduated from its “hobby” roots to a professional open source project.

During these formative stages, I was once again approached by Microsoft with an opportunity to show-
case some specific ASP.NET features. Specifically, a Membership API had been developed by Microsoft
for Whidbey (ASP.NET 2.0), and they were planning on creating a backported version for ASP.NET 1.1,
which we could leverage in DotNetNuke. This time the benefits were not so immediately obvious and
required some thorough analysis. This is because DotNetNuke already had more functionality in these
areas than the new Microsoft API could deliver. So in order to integrate the Microsoft components with-
out losing any features, we would need to wrap the Microsoft API and augment it with our own busi-
ness logic. Before embarking on such an invasive enhancement, we needed to understand the clear
business benefit provided.

Well, you can never discount Microsoft’s potential to impact the industry. Therefore, being one of the
first to integrate and support the new Whidbey APIs would certainly be a positive move. In recent
months there had been numerous community questions regarding the applicability of DotNetNuke with
the early Whidbey Beta releases now in active circulation. Early integration of such a core component
from Whidbey would surely appease this group of critics. From a technology perspective, the Microsoft
industry had long been awaiting an API to converge upon in this particular area; making application
interoperability possible and providing best practice due diligence in the area of user and security infor-
mation. Integrating the Microsoft API would allow DotNetNuke to “play nicely” with other ASP.NET
applications; a key factor in some of the larger scale extensibility we were hoping to achieve. Last, but
not least, it would further our positive relationship with Microsoft; a factor that was not lost on most as
the key contributor to the DotNetNuke project’s growth and success.

The reorganization of the Core Team also resulted in the formation of a small group of highly trusted
project resources which, for lack of a better term, we named the Board of Directors. The members of
this group included Scott Willhite, Dan Caron, Joe Brinkman, Patrick Santry, and myself. The purpose of
this group was to oversee the long-term strategic direction of the project. This included discussion on
confidential issues pertaining to partners, competitors, and revenue. In August 2004, we scheduled our
first general meeting for Philadelphia, Pennsylvania. With all members in attendance, we made some
excellent progress on defining action items for the coming months. This was also a great opportunity to

26

Chapter 1

05_595636 ch01.qxd 5/10/05 10:06 PM Page 26

finally meet in person some of the individuals whom we had only experienced Internet contact with in
the past. With the first day of meetings behind us, the second day was dedicated to sightseeing in the
historic city of Philadelphia. The parallels between the freedom symbolized by the Liberty Bell and the
software freedom of open source were not lost on any of us that day.

Returning from Philadelphia, I knew that I had some significant deliverables on my plate. We began
the Microsoft Membership API integration project with high expectations of completion within three
months. But as before there were a number of high-priority community enhancements that had been
promised prior to the Microsoft initiative, and as a result the scope snowballed. Scope management
is an extremely difficult task to manage when you have such an active and vocal community.

The snowball effect soon revealed that the next major release would need to be labeled version 3.0.
This is mostly because of “breaking” changes; modifications to the DotNetNuke core application that
changed the primary interfaces to the point that plug-ins from the previous version 2.0 release would
not integrate without at least some minimal changes. The catalyst for this was due to changes in the
Membership API from Microsoft, but this only led to a decision of “if you are forced to back compat-
ibility then introduce all of your breaking changes in one breaking release.” The fact is, there had been
a lot of baggage that had been preserved from the IBuySpy Portal, which we had been restricted from
removing due to legacy support considerations. DotNetNuke 3.0 provided the opportunity to
reexamine the entire project from a higher level and make some of the fundamental changes we had
been delaying for, in some cases, years. This included the removal of a lot of dead code and deprecated
methods as well as a full namespace reorganization, which finally accurately broke the project API into
logical components.

DotNetNuke 3.0 also demonstrated another technical concept that would both enrich the functionality
of the portal framework as well as improve the extensibility without the threat of breaking binary com-
patibility. Up until version 3.0 the service architecture for DotNetNuke was completely uni-directional.
Custom modules could consume the resources and services offered by the core DotNetNuke framework
but not vice versa. So although the application managed the secure presentation of custom modules
within the portal environment, it could not get access to the custom module content information.
Optional interfaces allow custom modules to provide plug-in implementations for defined core portal
functions. They also provide a simple mechanism for the core framework to call into third-party mod-
ules, providing a bi-directional communication channel so that modules can finally offer resources and
services to the core (see Figure 1-9).

Along with its many technological advances, DotNetNuke 3.0 was also being groomed for use by an
entirely new stakeholder, Web Hosters. For a number of years the popularity of Linux hosting has been
growing at a far greater pace than Windows hosting. The instability arguments of early Microsoft web
servers were beginning to lose their weight as Microsoft released more resilient and higher quality
server operating systems. Windows Server 2003 had finally shed its clunky Windows NT 4.0 roots and
was a true force to be reckoned with. So aside from the obvious economic licensing reasons, there was
another clear reason why Hosters were still favoring Linux over Windows for their clients — the avail-
ability of end-user applications.

The Linux platform had long been blessed with a plethora of open source applications running on the
Apache web server, built with languages such as PHP, Perl, and Python and leveraging open source
databases such as mySQL. The Windows platform was really lacking in this area and was desperately
in need of applications to fill this void.

27

An Inside Look at the Evolution of DotNetNuke

05_595636 ch01.qxd 5/10/05 10:06 PM Page 27

Figure 1-9

In order for DotNetNuke to take advantage of this opportunity, it needed a usability overhaul to trans-
form it from a niche developer–oriented framework to a polished end-user product. This included a
usability enhancement from both the portal administration as well as the web host perspectives. Since
Rob Howard had left Microsoft in June 2004, my primary Microsoft contact had become Shawn Nandi.
Shawn did a great job of drawing upon his usability background at Microsoft to come up with sugges-
tions to improve the DotNetNuke end-user experience. Portal administrators received a multi-lingual
user interface with both field-level and module-level help. Enhanced management functions were added
in key locations to improve the intuitive nature of the application. Web Hosters received a customizable
installation mechanism. In addition, the application underwent a security review to allow it to run in a
Medium Trust — Code Access Security (CAS) environment. The end result is a powerful open source
portal framework that can compete with the open source products on other platforms and offer Web
Hosters a viable Windows alternative for their clients.

DotNetNuke is an evolving open source platform, with new enhancements being added constantly
based on user feedback. The organic community ecosystem that has grown up around DotNetNuke is
vibrant and dynamic, establishing the essential support infrastructure for long-term growth and pros-
perity. You will always be able to get the latest high-quality release including full source code from
www.dotnetnuke.com.

28

Chapter 1

05_595636 ch01.qxd 5/10/05 10:06 PM Page 28

Installing DotNetNuke

In the last chapter you were introduced to DotNetNuke, the concept of portals, and you formed a
project plan for a DotNetNuke implementation. You also looked at architectural considerations
such as web farms, databases, and web servers.

This chapter examines how to install DotNetNuke. Although the actual process of installing
DotNetNuke isn’t very difficult, it does consist of a large number of steps. During the installation
process you will make critical decisions that affect your application, and undoing any mistakes
can be quite time-consuming later. To avoid costly mistakes, you must understand issues such as
hardware, software, and hosting prerequisites so that you can choose the best environment for
DotNetNuke.

The chapter is divided into four major areas:

❑ Preparation discusses the goals of your installation based on your earlier project plan.
Hardware, software, and hosting prerequisites are also explained.

❑ Implementation walks you step by step through the installation process.

❑ Explanation explores what actually happens during an installation and introduces the
concept of upgrades.

❑ Installation Templates introduces a new method of customizing an installation.

Preparation
“Failure to prepare is preparing to fail.” –John Wooden

06_595636 ch02.qxd 5/10/05 9:58 PM Page 29

30

Chapter 2

Objectives
The objectives of this chapter are straightforward. You will install DotNetNuke so you can create portals
and utilize the application’s abilities.

The DotNetNuke application will be installed as a virtual directory with a URL formatted as

http:// <server name>/DotNetNuke/

The <server name> section of the URL could represent your local machine (localhost), a web server on
your local network (intranet), or a web server external to your network (Internet).

Because many Internet web hosts offer a variety of different tools to manage the server environment, it
is virtually impossible to cover all of these tools within the confines of this book. For that reason, we will
only be discussing an installation where you have administrative control over a server and can access it
either physically or remotely (remote desktop access).

Hardware Prerequisites
DotNetNuke does not require any hardware prerequisites per se, but it does require a list of software
prerequisites, which do require a minimum level of hardware specification.

The following table lists SQL Server’s minimum requirements (www.microsoft.com/sql/evaluation/
sysreqs/2000/default.asp).

Processor Intel Pentium or compatible 166-megahertz (MHz) or higher processor

Memory (RAM) • Enterprise Edition: 64 megabytes (MB) of RAM; 128 MB recommended
• Standard Edition: 64 MB
• Evaluation Edition: 64 MB; 128 MB recommended
• Developer Edition: 64 MB
• Personal Edition: 128 MB for Windows XP; 64 MB for Windows 2000;

32 MB for other operating systems
• MSDE: 128 MB for Windows XP; 64 MB for Windows 2000; 32 MB for other

operating systems

Hard Disk Enterprise, Standard, Evaluation, Developer, and Personal Editions require
• 95–270 MB of available hard disk space for the server; 250 MB for a typical

installation.
• 50 MB of available hard disk space for a minimum installation of Analysis

Services; 130 MB for a typical installation.
• 80 MB of available hard disk space for English Query.

MSDE requires 44 MB of available hard disk space.

Because DotNetNuke is a web application, it is preferable for your server to have a large amount of
RAM (1 GB or greater) to avoid disk paging.

06_595636 ch02.qxd 5/10/05 9:58 PM Page 30

Software Prerequisites
Chapter 1 introduced a number of keywords such as web server and database. Both of these items are
software prerequisites for DotNetNuke.

Web Server Microsoft Internet Information Server 5 or greater (contained in
Windows 2000 Server, Windows XP Professional, Windows 2003
Server)

Microsoft .NET Runtime ASP.NET 1.1 or later
(Note: At the time of writing this book, DotNetNuke will not run
under the beta version of ASP.NET 2.0, although we are working
toward compatibility as it nears release.)

Database Microsoft SQL Server 2000 or greater
(Note: DotNetNuke does run under a number of other databases
provided by third parties; see www.dotnetnuke.com for more
information.)

Hosting Prerequisites
Although we have already discussed the hardware and software prerequisites required by DotNetNuke,
it is important to list the additional prerequisites that you should look for in third-party hosts. You
should ask a prospective host if they support the following items:

File Permissions DotNetNuke requires the account that the ASP.NET process runs
under (see the following note) to have the file permission of FULL
CONTROL over the root installation folder.
(Note: The account ASP.NET runs under by default in Windows 2000
is the <MachineName>\ASPNET account; in Windows 2003 it is NT
AUTHORITY\NETWORK SERVICE.)

Implementation
This section guides you step by step through the installation process. The steps illustrate an installation
to a standalone server as discussed in our objectives. Later in this chapter, we discuss installation to a
group of web servers (known as a web farm).

31

Installing DotNetNuke

06_595636 ch02.qxd 5/10/05 9:58 PM Page 31

Downloading DotNetNuke
The first step in the installation process is to obtain the DotNetNuke software. The latest version of the
software can be downloaded at the official DotNetNuke web site (www.dotnetnuke.com/).

Note: you must be a registered user to reach the download page.

Extracting the Installation File
The DotNetNuke distribution arrives as a single zip file. The zip file contains the source code, documen-
tation, and database scripts necessary for the application to operate. Extract the entire contents of the zip
file to your chosen installation directory (for example, c:\websites\dotnetnuke\).

To extract a zip file you can either use the built-in zip functionality of Windows XP or a third-party com-
pression tool such as WinZip, which you can obtain from www.winzip.com/.

Creating the Database
The next step is to create the database that will contain your data for the DotNetNuke application.

To perform this, you should have the Microsoft Sql Server Client Tools installed, and in particular
Enterprise Manager. If you do not have these, they can be installed from the CD that Microsoft SQL
Server was installed from.

Note: If you do not have access to Enterprise Manager, for example, if you are using MSDE, you can try
a third-party tool such as ASP.NET Enterprise Manager, a web-based interface for Microsoft SQL Server
and MSDE. It is designed to perform many SQL Server and MSDE administration tasks from any com-
puter with a web browser. You can get this tool at www.aspenterprisemanager.com/.

Once you have opened Enterprise Manager, you can expand the database server you want to create your
database. If it’s not listed, you will have to register your SQL Server instance with Enterprise Manager.
To do this, please refer to the Enterprise Manager help.

Now that you have found your database server — in our case, it is our local machine known as
(local) — you can create your database by right-clicking the Databases node under your database
and selecting New Database, as shown in Figure 2-1.

32

Chapter 2

06_595636 ch02.qxd 5/10/05 9:58 PM Page 32

Figure 2-1

A dialog box appears asking for a database name; you can put in any name. For our example, we’ll put
in DotNetNuke, as shown in Figure 2-2. Once you are happy with the name, click OK.

Further configuration options are listed on the dialog (Data Files and Transaction Log), but we will
accept the defaults for the purposes of a quick installation. For further information about these options,
please see the help file that comes with Enterprise Manager.

33

Installing DotNetNuke

06_595636 ch02.qxd 5/10/05 9:58 PM Page 33

Figure 2-2

Creating the Database User
The next step is the creation of a user account to access the database.

Strictly speaking, you have two options:

❑ Windows Security uses the account that your application is running under to access the
database. This is the more secure option, but it is not supported in all environments, particularly
in shared hosting.

❑ SQL Server Security uses a username and password combination to access the database. This is
supported in most environments, and is most similar to other database servers.

34

Chapter 2

06_595636 ch02.qxd 5/10/05 9:58 PM Page 34

For the purposes of this book, we’ll use SQL Server Security, but we encourage you to explore Windows
Security, especially in environments where you control the infrastructure.

To create a user account for the database, you first need to navigate to the Security node located at
the top level of the server you are connecting to (in Enterprise Manager). Expand it, select the Logins
node, and you should see the list of users who already have access to your database server in the
right-hand pane.

Now that you are at the login section, right-click the Logins node and select New Login, as shown in
Figure 2-3.

Figure 2-3

35

Installing DotNetNuke

06_595636 ch02.qxd 5/10/05 9:58 PM Page 35

You should see a dialog box appear prompting for details about the account. In this case, create a user
called DotNetNukeUser as both the username and password. Make sure you select the Sql Server
Authentication radio option; otherwise it will create an account for Windows Authentication. Figure 2-4
shows a sample dialog with the details filled in.

You should also select the default database from the drop-down list; in our case it is the name of our
database (DotNetNuke). The default database allows that database to be selected by default when con-
necting as that user.

Before you click OK, there is one more step you need to perform. Even though we have selected
DotNetNuke as our default database, we still need to grant our user access to Read/Write from it. To do
this, select the Database Access tab and check the Permit check box next to the DotNetNuke database.

Figure 2-4

36

Chapter 2

06_595636 ch02.qxd 5/10/05 9:58 PM Page 36

You should also grant the account db_owner privileges by checking that check box in the bottom of the
dialog. The account needs db_owner privileges because it will be creating and dropping many database
objects.

Figure 2-5 shows the correct settings. Once you have them set, click OK, confirm the password as
prompted, and click OK again.

Now that you have created the account, it should appear in the right task pane whenever you select the
Logins node, and you can come back here anytime to change details about this account.

Figure 2-5

37

Installing DotNetNuke

06_595636 ch02.qxd 5/10/05 9:58 PM Page 37

Setting Permissions
The next step in the process is to set the file permissions required by the software. DotNetNuke has the
capability to create many portals in the one installation, in effect becoming a small host itself. To perform
this task, it needs to create, delete, and modify directories and files. It is these operations that require the
application to have extra permissions over files within the application.

To assign these permissions, navigate through File Manager to your installation folder (for example,
c:\websites\DotNetNuke\). Right-click the root folder and select the “sharing and security” option.
When the dialog appears, select the Security tab. The dialog that appears is shown in Figure 2-6.

Figure 2-6

You should add either the aspnet user account (Windows 2000, Windows XP), the Network Service user
account (Windows 2003), or if you have changed the account your site runs under (for advanced users),
then that is the account to specify. The chosen account should be granted Full Control.

Before clicking OK, click the Advanced button and another dialog will appear allowing extra configura-
tion. Ensure that the chosen account listed has a rule of “This folder, subfolders and files.” You can see
the list of rules in the Permission entries section. Figure 2-7 shows the advanced dialog.

Once confirmed, click OK to close the advanced dialog, and click OK again to close the properties
dialog.

38

Chapter 2

06_595636 ch02.qxd 5/10/05 9:58 PM Page 38

Figure 2-7

Creating the Web Site
So far you’ve only extracted the files and created a database to store your application’s data. It’s now
time to register your application with your chosen web server. Registering your files with the web server
allows you to view the site from http://<server name>/DotNetNuke/.

To administer IIS, click the Start Menu; select the Run Command, type in inetmgr, and click OK.
Alternatively, you can access it from the Control Panel ➪ Administrative Tools ➪ Internet Information
Services.

The administration console for IIS should appear, showing a node with the local computer’s name;
expand this item to reveal the list of web sites on the local computer. Figure 2-8 shows the default config-
uration for IIS.

If your IIS is not hosted on the local computer, you can remotely administer IIS by right-clicking the
Internet Information Services node, selecting Connect, and following on the on-screen prompts to con-
nect to the remote computer.

39

Installing DotNetNuke

06_595636 ch02.qxd 5/10/05 9:58 PM Page 39

Figure 2-8

Once you have done this, you should see a list of web sites for that IIS instance. Figure 2-8 shows the
default web site that is automatically configured when IIS is installed, and serves as a default “catch all”
for requests on port 80.

For the purposes of this chapter, we’ll be using the default web site. IIS does support multiple web sites,
just not under Windows XP. If you want to learn more about configuring multiple web sites (to possibly
host many different domain names) see the IIS help.

Before walking through the steps, we’ll explain a few key IIS terms and how IIS works from an adminis-
trator’s perspective.

When developing locally, or on your internal network, you may want to use two features in IIS called
Virtual Directories and IIS Applications.

A Virtual Directory refers to a directory underneath a web site that does not actually physically reside in
that location. The web site contains a pointer to elsewhere on the file system. This is handy if you do not
want to put all of your web sites under the default c:\inetpub\wwwroot\ location. You may instead
want to put them under a location such as c:\websites\DotNetNuke.

40

Chapter 2

06_595636 ch02.qxd 5/10/05 9:58 PM Page 40

An IIS Application refers to an entry point of a web application. It allows the ASP.NET runtime to deter-
mine where such things as configuration files and assemblies reside for a given application.

So, keeping in mind that you want your URL to look like this:

http:// <server name>/DotNetNuke/

you’ll need to set up a virtual directory that points to your folder where you extracted the DotNetNuke
source code files and then set it as an IIS Application.

To do this, right-click the Default Web Site and select New ➪ Virtual Directory. The Virtual Directory
Creation Wizard appears as shown in Figure 2-9.

Figure 2-9

Click Next to proceed to the next step in the wizard, which is specifying the Portal Alias.

The Virtual Directory Alias refers to the virtual name assigned to IIS that will map to your chosen instal-
lation directory.

Remember, you want your URL to look like http://<server name>/DotNetNuke, so your virtual
directory name would be DotNetNuke. Enter this term in the dialog, as shown in Figure 2-10, and
click Next.

41

Installing DotNetNuke

06_595636 ch02.qxd 5/10/05 9:58 PM Page 41

Figure 2-10

The next step is to select the physical file location for the Virtual Directory. This should point to the loca-
tion from which you extracted your .NET Nuke source files. For our example, this is our installation
directory (for example, c:\websites\DotNetNuke\). Figure 2-11 shows the completed step. Once you
have selected the location, click Next.

Figure 2-11

42

Chapter 2

06_595636 ch02.qxd 5/10/05 9:58 PM Page 42

The last step is to specify the permissions applicable for the Virtual Directory. You should just keep the
defaults of Read and Run Scripts. Once you have ensured that these are selected, click Next and then
click Finish. Figure 2-12 shows the correct options.

Figure 2-12

If you are installing to a development server, such as your local machine, you may want to check
Directory Browsing. This allows you to connect to your web site in Visual Studio .NET via File ➪

Open ➪ Project from Web. For production sites, it is not recommended that you check Directory
Browsing.

Now that you have set up a Virtual Directory (DotNetNuke) pointing at your unzipped location
(c:\websites\DotNetNuke\ or equivalent), there is an additional step in IIS you must perform.

Earlier in this chapter we discussed the concept of an IIS Application as a term that represents the entry
point of an application. ASP.NET needs this established to determine at what level to look for configura-
tion files, binary files, and so on.

When you create a Virtual Directory it will automatically be set as an IIS Application. To confirm that
your virtual directory is set as an IIS Application, right-click the node DotNetNuke and then click
Properties. You should see a screen similar to the one shown in Figure 2-13.

If you look under the Application Settings section of the dialog box, you’ll notice that it has an applica-
tion name, and the button to the right has the name “Remove.” If it was not set as an application, it
would have the word “Create” to make a new Virtual Directory. You can also tell whether a Virtual
Directory is set up as an IIS Application by the type of icon. IIS Applications have icons that look like
open boxes.

43

Installing DotNetNuke

06_595636 ch02.qxd 5/10/05 9:58 PM Page 43

Figure 2-13

You can also change the properties you set during the wizard at any time by returning to this dialog box.
For more information about the choices you have available, please consult the IIS help system.

Configuring .NET Nuke
The next step is to tell DotNetNuke how to communicate with the database.

To do this, navigate to your folder (for example, c:\websites\DotNetNuke\) and open up the
Web.config found in this directory. You can use your favorite text editor to do this, including Visual
Studio .NET.

The Web.config is the central administration file for ASP.NET; it is designed to store configuration set-
tings such as connection strings and site-specific settings.

DotNetNuke’s web.config file is used to store the database connection string, as well as a variety of
other settings relating to how DotNetNuke works, and the various application hooks that are designed
in the application.

For the purposes of the installation, you want to set a connection string that will tell DotNetNuke how to
connect to your chosen database (Sql Server).

44

Chapter 2

06_595636 ch02.qxd 5/10/05 9:59 PM Page 44

Locate the AppSettings section in the configuration file and then locate the SiteSqlServer element.
Change the value attribute to specify the location of your database, the username, and the password.
Listing 2-1 shows a sample connection string for a server residing on the localhost.

Once you have made the changes, save the web.config file.

Listing 2-1: Changing the Connection String

<appSettings>
<add key=”SiteSqlServer”
value=”Server=(local);Database=dnnportalbook;uid=dnnportaluser;pwd=dnnportaluser;”
/>
<add key=”MachineValidationKey” value=”F9D1A2D3E1D3E2F7B3D9F90FF3965ABDAC304902”

/>
<add key=”MachineDecryptionKey”

value=”F9D1A2D3E1D3E2F7B3D9F90FF3965ABDAC304902F8D923AC” />
<add key=”MachineValidationMode” value=”SHA1” />
<add key=”InstallTemplate” value=”DotNetNuke.install” />

</appSettings>

Testing the Installation
Here’s a recap of what you have done during the implementation section of this chapter. You should ver-
ify that you have performed these steps:

1. Downloaded and extracted the .NET Nuke source to a directory.

2. Created a database (DotNetNuke) and a database user (DotNetNukeUser).

3. Set the necessary ASP.NET permissions on the extracted folder.

4. Created a Virtual Directory in IIS, and made sure it was set as an IIS Application.

5. Changed the connection string in the Web.Config.

If you have completed all these steps, you should be able to open up your web browser and navigate to

http://<server name>/DotNetNuke/

This request will take some time, so be patient and do not hit Refresh. Here are two reasons why this
takes some time:

❑ ASP.NET will be Just-In-Time compiling the assemblies.

❑ DotNetNuke will be building the database to the latest version. (See the following
“Explanation” section.)

45

Installing DotNetNuke

06_595636 ch02.qxd 5/10/05 9:59 PM Page 45

As it is upgrading, you should see some messages appear on the screen as shown in Figure 2-14.
These messages are designed to provide immediate feedback about the installation progress to the
administrator.

Figure 2-14

46

Chapter 2

06_595636 ch02.qxd 5/10/05 9:59 PM Page 46

If everything is successful, you should now have a link to visit the first page on your site. Click that link
and you should be presented with a screen similar to that in Figure 2-15.

Figure 2-15

47

Installing DotNetNuke

06_595636 ch02.qxd 5/10/05 9:59 PM Page 47

Common Installation Issues
Some people may have problems when trying to run the application. We have tried to provide screens to
assist in diagnosing an issue associated with an installation. This section describes some common issues.

Invalid Connection String
Your connection string is invalid in the web.config file. Confirm that the connection string is correct, the
database has been created, and the user has access to the database (see Figure 2-16).

Figure 2-16

Insufficient File Permissions
You have not correctly set the file permissions. This could be because you have not granted access to the
root of the folder, or you have specified a different account than the account currently running the
ASP.NET request, as shown in Figure 2-17. See the “Setting Permissions” section earlier in this chapter
for more information.

48

Chapter 2

06_595636 ch02.qxd 5/10/05 9:59 PM Page 48

Figure 2-17

Explanation
This section takes a step away from the actual installation and discusses the process DotNetNuke goes
through at installation time.

When you download DotNetNuke, you are essentially getting two types of files.

The first group of files is the source code, binary assemblies, and the associated resource files that belong
to any web site. These typically have extensions like .aspx, .ascx, .gif, .jpg, and so on, and you should see
these scattered throughout the folder you unzipped in the preceding section.

The second group is a collection of SQL scripts; these scripts are versioned and correspond to certain
releases issued by the core team.

49

Installing DotNetNuke

06_595636 ch02.qxd 5/10/05 9:59 PM Page 49

Because we have already selected Sql Server as our target database (default choice), let’s take a look at
the SQL Server–specific scripts.

You can find them in the following path from your directory where you extracted your files earlier (for
example, c:\websites\DotNetNuke\):

\Providers\DataProviders\SqlDataProvider

You should see a collection of scripts, ordered in version, from 00.00.00.SqlDataProvider to
01.00.00.SqlDataProvider all the way up to the current version. These scripts are actually Structured
Query Language (SQL) scripts, which when executed will upgrade your database from one version to
another.

In other applications, these files are executed manually by an administrator. DotNetNuke saves you the
time and executes these files during an installation or an upgrade. In a sense, DotNetNuke is responsible
for keeping your database up to date and in sync with the application code. Following is a look at how it
actually works.

As mentioned in the introduction, DotNetNuke is versioned in two places, at the binary level (code) and
at the schema level (database). So what does this actually mean? It means at runtime you can ask ques-
tions about the versions, and perform an upgrade/installation based on the answers.

The questions essentially are

❑ What assembly version am I?

❑ Does that assembly version match the database version?

The next decision is when to ask these questions and when to perform the corresponding actions; ideally
you would like to ask them when the application first starts, for example when the first person requests
a page. ASP.NET provides a number of hooks into the pipeline of a request. One hook is an event that
occurs during the initialization of an application (application_start). The questions (and actions) just
mentioned are placed in this event.

To better explain the process, the following sections look at the only two scenarios: a brand new installa-
tion and an upgrade from an earlier version.

Scenario 1: The Clean Install
This scenario examines the process of installing a new install of DotNetNuke on a site that does not cur-
rently exist.

When the initial request is sent to DotNetNuke, it checks the version of the assembly. At the time of this
writing, that version number is 3.0.11. It then checks the version held in the database. This essentially
would be version 0.0 on a clean install because none of the tables have actually been created.

50

Chapter 2

06_595636 ch02.qxd 5/10/05 9:59 PM Page 50

So, given that the version is 0.0, it will run the SQL scripts in order to build the database. Each version
ever released has its own SQL script. Once the database has been upgraded, DotNetNuke will render the
Installation Complete page.

Scenario 2: The Upgrade
The next scenario is very common; the core team has released a new version of DotNetNuke and it has
great new features that you want to take advantage of.

You’ve backed up your file structure and your database, and you are ready to upgrade. Once you copy
the new files to your site, and the first request is received, DotNetNuke checks the assembly version,
which would be the new value (say, 3.0.11), and then it checks the database version (say, 2.1.2). It then
proceeds to execute the scripts between these two values until they match.

Your site will retain the content, skins, and modules it already had, and you have effectively upgraded
your site and can now take advantage of the new features that version offers.

Installation Templates
One of the exciting new features in DotNetNuke version 3 is the introduction of installation templates.
These are designed to give administrators more control over the installation process and the default con-
tent/configuration that is created. This is specifically targeted at web hosts or administrators offering a
packaged solution.

These templates allow you to customize aspects of an installation such as the following:

❑ SQL scripts to build the database

❑ User accounts to create

❑ Default settings inside DotNetNuke such as Mail Server, Proxy Server, Friendly Urls, and so on

❑ Portals to create

❑ Modules installed

The DotNetNuke installation source contains a file (dotnetnuke.install.resources), which is an xml file
containing the various settings discussed above. Figure 2-18 shows an example file.

You can find it in the following path:

“/Portals/_default”

The template itself is broken up into a number of sections, as described next.

51

Installing DotNetNuke

06_595636 ch02.qxd 5/10/05 9:59 PM Page 51

Figure 2-18

The <host> node is the root node of the template. All other nodes are the children of <host>. There are
eight immediate children:

❑ <description>: Provides a description of the template.

❑ <schemascript>: Name of the Script file that builds the Database Schema (this file must be
located in the folder indicated by the providerPath attribute of the default Data provider in
web.config).

❑ <datascript>: Name of the Script file that builds the required Database Data (this file must be
located in the folder indicated by the providerPath attribute of the default Data provider in
web.config).

❑ <version>: The database version that the <schemascript>, <datascript> files build. This is usu-
ally the current version, but if the version is less than the current version the appropriate
upgrade scripts are run to make the database version equal app version.

❑ <superuser>: Information about the superuser (Host Account). This node allows you to specify
a default superuser other than the default (Host/Host).

52

Chapter 2

06_595636 ch02.qxd 5/10/05 9:59 PM Page 52

❑ <settings>: The default host settings for the application — the child nodes of this node corre-
spond to the HostSettings table in the database, and are managed under the Host/Host Settings
menu (after installation).

❑ <desktopmodules>: The desktop modules to install for this installation. This can be very useful
when you want to reduce the default number of modules a user can see within a portal.

❑ <portal>: The default portal configuration.

If you want to make a new file so you can change the settings, you can point to a new file via the
web.config file using the following element:

<add key=”InstallTemplate” value=”DotNetNuke.install” />

Summary
This chapter covered a typical DotNetNuke installation. It provided a step-by-step guide to
installing your own DotNetNuke application, as well as introduced the new method of customizing
an installation.

Hopefully by following the steps in this chapter you can perform a successful installation. We hope to
make DotNetNuke a piece of software that requires very little administration by technical people and
becomes more about site administration by end users.

53

Installing DotNetNuke

06_595636 ch02.qxd 5/10/05 9:59 PM Page 53

06_595636 ch02.qxd 5/10/05 9:59 PM Page 54

Portal Overview

This chapter looks at the various sections of the DotNetNuke application from an administrator
and user’s view. The application offers 15 content modules natively, which allow a broad range of
content to be presented to your visitors, and a wide range of modules that provide an interface for
administering your installation. The base installation of DotNetNuke allows you to set up a fully
functional web site that will provide the presentation of information most web sites will need. You
can also find a wide range of third-party modules that will easily plug into the application and
allow you to extend the functionality of DotNetNuke further. Let’s look at some of the features
available to you from a base installation of the application.

What Is a Portal?
DotNetNuke uses the term portal to describe a separation between each web site one instance of
the application may contain. So you might ask, what is a portal? Webster defines a web application
portal as “a website considered as an entry point to other websites, often by being or providing
access to a search engine.” This can be true of DotNetNuke, but it is really more than just a door-
way to other applications or search engines. It can, in essence, perform these functions as well as a
host of others associated with displaying information to your users.

For the purposes of this discussion we can define a portal as the related data for one web site
hosted within your DotNetNuke installation. The application natively provides the ability to host
multiple web sites from the same code base, all containing different information and presented
to the user at runtime based on the URL the user uses to access the code base. Exactly how the
application accomplishes this task is covered in another chapter. For our discussion we can refer to
two types of portals, parent or child portals, which are discussed in detail later in this chapter. As
the portal administrator you can set up hundreds of various web sites on the same portal. These
can be a combination of parent and child portals, and at runtime the application will determine the
proper content to display to the user based on the PortalID of the portal that is accessed. This is
one of the most powerful features of this application and probably accounts for the rapid growth

07_595636 ch03.qxd 5/10/05 10:05 PM Page 55

of the application since its inception. You define the difference between whether a portal becomes a child
or parent portal when you create the portal.

Portal Organizational Elements
This section examines the organizational elements of a portal.

Parent/Child Portals
Let’s look at the differences in the format of the URL between the two types of portals. A parent portal’s
URL takes the format of http://www.YourDomain.com and a child portal takes the format of http://
www.YourDomain.com/YourChildPortal. The application installation may contain any combination
of parent or child portals. The only real difference between how you set up the various types of portals is
how you define the portal. Figure 3-1 shows the options available in the Portal administration module.

The Portal module gives you several options when setting up a new portal. Notice the radio buttons for
selecting a parent or child portal. Selecting the child portal requires no further configuration outside of
the application. To set up a parent portal you must perform some additional steps. You first need to set
up an additional web site in your IIS Manager with host headers for your domain name and create a
DNS record to point to the IP address of your web server. Information on how to perform these tasks is
outside of the scope of this book, so please refer to your IIS and DNS help files for the steps. You can find
specific details on how to use each of the functions for setting up a new portal in Chapter 5, which cov-
ers the host functions of DotNetNuke.

Figure 3-1

56

Chapter 3

07_595636 ch03.qxd 5/10/05 10:05 PM Page 56

Pages
Pages are a relativity new concept in DotNetNuke. Prior to version 3.x these were referred to as tabs.
This change was made to allow for a more user-friendly experience for the novice who may not be a pro-
grammer by trade. You can think of a page in the same way you think of a static html page. The differ-
ence is that the application loads the content based on the parameters passed to it at runtime.

In reality there is really only one page in the application that displays all the content to your users.
Exactly how this works is explained in detail in the architecture and API chapters. Figure 3-2 shows the
options for administering your portal pages.

Figure 3-2

In the left corner you will notice the Page Functions menu. These functions allow you to manage your
pages. These are fairly self-documenting and you can deduce the purpose of each function by its name.
Table 3-1 describes each of the available functions.

Table 3-1: Page Functions

Function Description

Add This is where you add a new page to the portal. After you select this menu
option you are presented with the Page Management control, where you can
define your page properties such as Page Name, Title, Keywords, Security,
and so on.

Settings The Settings menu allows you to modify a page created earlier. You will be
taken to the edit page for the current page and you will be able to modify all
the properties of the page.

Delete Delete allows you to remove the current page from your portal.

Copy Copy defaults to allow copying of the modules located on the current page.
You also have the option of duplicating the content in the modules of the cur-
rent page. This is a real time-saver when setting up your portal.

Preview Preview allows you to view your page in the same manner your users will
view it. This helps you ensure that your users see your content as you
intended. This function also produces more questions than any other function
for novices with DotNetNuke. If you are administering your portal and sud-
denly notice you can no longer edit the individual items of your modules,
ensure this Preview mode is turned off because it is likely your problem.

As you can see, the name adequately describes each option’s function. DotNetNuke attempts to follow
this same structure throughout the application. Figure 3-3 illustrates the options available in the Page
Management page, which you use to add new pages to your portal.

57

Portal Overview

07_595636 ch03.qxd 5/10/05 10:05 PM Page 57

Figure 3-3

As you will see in later chapters, DotNetNuke utilizes an object-oriented approach in all functions where
feasible. This allows the application to reuse various components of the application, which creates a
common user interface for most of the functions. You will see many of the same options available
throughout the administration screens. The application utilizes the same user controls in numerous
areas, which accomplishes two main functions: it allows a consistent look and feel to the application and
it simplifies the amount of code required to perform these functions. One thing new to DNN 3.X is the
addition of field-level help. Notice the question mark images in Figure 3-3. These images expand when
clicked, offering some additional descriptions on the type of information the field expects. This helps
reduce the learning curve associated with managing your content.

Panes
Panes are the areas of your skin that hold the various content modules you will drop on each page.
These allow you to organize your content in a manner that makes the best use of your site real estate.
The number of panes is controlled by your skin design. For a full discussion on creating skins, see
Chapter 13. Panes are dynamically populated at runtime with the modules assigned to the page. The
types of modules you can use to display your content are discussed in the “Modules” section later in this
chapter.

One thing to be aware of when you are changing skins in your portal is that the pane names must match
the ones in your current skin. Otherwise, you will need to reposition your modules to the proper pane
because a skin change may cause your modules to all become defined in the ContentPane. The

58

Chapter 3

07_595636 ch03.qxd 5/10/05 10:05 PM Page 58

ContentPane is strict requirement for skins and a skin will not function without this pane. DotNetNuke
ships with several prebuilt skins to help you get started launching your new site.

Containers
Containers allow you to enhance the look of your portal without any design changes to your skin. A con-
tainer’s purpose is to surround the content of a module with some design element, which allows you to
bring more attention to the content of the module. You have two options for applying containers to your
portal: You can apply a default container to your entire portal or set a container for each individual mod-
ule. Let’s add a module to a page and set up a container for a visual reference.

Now, modify the container of the Links module to change the look of the default page. First select the
Settings option from the module actions menu as shown in Figure 3-4.

Figure 3-4

Selecting the Settings tab navigates you to the Module Settings page for the Links module. You will
notice the Module Settings page contains many of the same options as the Portal Settings page; this is an
example of maintaining a consistent interface throughout the application through the use of the object-
oriented programming we’ve used in DotNetNuke. Scroll down to the Page Settings ➪ Basic Settings
Panel in the Module Setting control (you may need to expand the panels by clicking the + sign for each
panel and selecting a new container for this module). Currently this module is using one of the default
containers that ship with the application. Select the DNN - Blue - Text Header - White Background con-
tainer and update your module. You are then taken back to your original page and you will immediately
see the difference this one change makes. Go ahead and update all the modules on this page so you can
really see the difference. As you can see in Figure 3-5, the entire look of this page changes with only a
few mouse clicks.

59

Portal Overview

07_595636 ch03.qxd 5/10/05 10:05 PM Page 59

Figure 3-5

You can see by this example that the use of containers offers you a lot of flexibility with controlling the
display of content to your users. Normally you will want your containers to match the colors and design
of your site, and most skins provide these complements as part of the package. Many commercial and
free versions of skins are available for DotNetNuke that you can download or purchase. Refer to the
DotNetNuke web site for links to a wide variety of skins and containers. Creating skins and containers
is covered extensively in Chapter 13.

Modules
Modules are the meat and potatoes of the DotNetNuke application. Modules are the components that
allow DotNetNuke to finally serve its intended purpose of displaying relative, easy-to-update content to
your visitors. The applications for these modules and how to use them to add your content is covered in
Chapter 6. Hundreds of free and commercial modules are available that you can obtain to extend the
functionality offered by the application. Just perform a web search for “DotNetNuke Modules” with
your favorite search engine and you will be able to find a module to meet almost any need you may
have for managing content. This section of the chapter provides an overview of each module and pre-
pares you for the detailed information in Chapter 6, which shows you how easy it is to use the modules
to present content to your users. With version 3 of DotNetNuke, all the content modules have been
divided into separate projects, which allows you to pick and choose the modules you need for your
installation. So, if your specific business requirement does not need an RSS module, you can remove it
from your installation without any adverse effects or any modifications of the core code. This is an
important enhancement from a business perspective because it allows you to easily modify the applica-
tion to accommodate your unique business rules and needs.

60

Chapter 3

07_595636 ch03.qxd 5/10/05 10:05 PM Page 60

Account Login
The Account Login module provides the login interface as a module. In can be useful in two scenarios:

❑ The first scenario is when you would like the login dialog to appear on the home page (without
the user clicking the login link).

❑ The second scenario is to be used on a login page, which could contain additional modules. You
can specify any page within your portal as the login page via the administration screens located
at Admin ➪ Site Settings ➪ Advanced Setting ➪ Page Management.

Announcements
As its name suggests, the Announcements module is used to present a list of announcements. Each
announcement includes a title, text, and a “read more” link. Optionally, the announcement can be set
to expire after a specified date.

Banners
DotNetNuke provides a rich set of vendor management tools. One of the tools provided is the Banners
module. This module is used to display the advertising banners of vendors created within the portal.
Management of these vendors and creation of banners is performed in the administration area located at
Admin ➪ Vendors. The module itself provides facilities to select the number of banners to display and
the banner type.

Contacts
The Contacts module renders contact information for a group of people; some example groups are a pro-
ject team, a sporting team, or personnel within your department. The module provides an edit page,
which allows authorized users to edit and add contacts.

Discussions
The Discussions module is a threaded discussion board; it provides groups of messages threaded on a
single topic. Each message includes a Read/Reply Message page, which allows authorized users to reply
to existing messages or add a new message thread. Although this is not a full-fledged forum module, it
offers some functionality that you can use to enable light forum activities on your site.

Documents
The Documents module renders a list of documents, including links to browse or download the docu-
ment. The module includes an edit page, which allows authorized users to edit or add the information
about a document (for example, a friendly title).

61

Portal Overview

07_595636 ch03.qxd 5/10/05 10:05 PM Page 61

Events
The Events module renders a list of upcoming events, including time and location. Individual events can
be set to automatically expire from the list after a particular date. The module includes an edit page,
which allows authorized users to edit or add an event.

FAQ
The FAQ module allows an authorized user to manage a list of Frequently Asked Questions and their
corresponding answers. This is a great module for reducing support calls to your customer service cen-
ter because you can compile a list of the questions you receive about your business or services and pre-
sent this data to your users.

Feedback
The Feedback module allows visitors to send messages to the administrator of the portal. With version 3
of the portal software you have the ability to customize this module to send e-mails to various individu-
als within your organization depending on the message content. This was not available in previous ver-
sions because all e-mails sent from the module were sent to the portal administrator. This is just one
more example of how DotNetNuke allows you to assign different tasks to the correct individuals in your
organization.

IFrame
The IFrame module is an Internet Explorer browser feature that allows you to display content from
another web site within a frame on your site.

Image
The Image module renders an image using an HTML IMG tag. This module includes an edit page that
allows an authorized user to specify the location of the image that can reside internal or external to the
portal. The authorized user can also specify height and width attributes, which permits you to scale
the image.

Links
The Links module renders a list of hyperlinks. This module includes an edit page, which allows autho-
rized users to edit and add new links. Each link can be customized to launch new windows or capture
information such as how many times that link has been clicked.

News Feeds (RSS)
The News Feed module allows you to consume syndicated news feeds in Rich Site Summary (RSS) for-
mat. This module includes an edit page that allows you to specify the location of the news feed and the
style sheet (XSL) used to transform the news feed.

62

Chapter 3

07_595636 ch03.qxd 5/10/05 10:05 PM Page 62

Search Input
The Search Input module provides the ability to submit a search to a given search results module.

Search Results
The Search Results module provides the ability to display search results.

Text/HTML
The Text/HTML module renders a snippet of HTML or text. This module includes an edit page, which
allows authorized users to edit the HTML or text snippets directly (using the configured rich text editor).

User Accounts
The User Accounts module allows users to register and manage their account.

User Defined Table
The User Defined Table module allows you to create a custom data table for managing tabular
information.

XML/XSL
The XML/XSL module renders the result of an XML/XSL transform. This module includes an edit page,
which allows authorized users to specify a location for the XML document and the XSL style sheet used
for transformation.

Remember, this is not a definitive list of the modules available within DotNetNuke; you have the option
of installing modules provided by third parties, or to even author your own module. For complete
instructions on how to use each of these modules, refer to Chapter 6, which covers the administration of
the DotNetNuke base modules. Chapters 9 through 12 cover the aspects associated with authoring your
own modules to solve a unique business need for your organization.

Additional Modules
DotNetNuke also provides some additional modules that are available in the download but not installed
by default in the application:

❑ User’s Online: This module allows you to display information about the current number of visi-
tors accessing your portal at any given time.

❑ Survey: This module allows you to conduct online surveys with your portal.

63

Portal Overview

07_595636 ch03.qxd 5/10/05 10:05 PM Page 63

At the time of this writing, several other modules are under development that will enhance the usability
of the application even further. Several members of the DotNetNuke Core Team are developing a full-
fledged forum module and a photo gallery module, which will be included in later releases of the
application.

User Roles
DotNetNuke offers a fairly robust method for dealing with the permissions and controlling the tasks a
particular user is allow to perform. It does this with a roles-based security module, where every page
and module in the application is assigned roles that determine what the user is allowed to do within the
context of the application. As you saw earlier in the chapter, you have the option of setting permissions
at several levels within the portal. A user may be allowed access to edit certain modules, or be given
access to edit the entire page as you deem necessary. These functions also apply to actual viewing of a
module’s content or a specific page. Basically, all you need to do is create the necessary security roles
and assign the permissions you want that role to perform to the module or page. Once you have the
roles and permissions defined you can then place your users in the appropriate role, which will allow or
restrict their access based on those permissions. This allows very granular control over the actions of
users in your portal.

Summary
This chapter introduced the concepts of DotNetNuke terms and basic application functionality. The
chapters that follow dive deeper into these items and introduce the details on how each DotNetNuke
function can be implemented in your unique installation. As you can see from this chapter, the applica-
tion offers a lot of functionality from a base installation and will allow you to quickly move your web
site from conception to production. The next chapter looks at the host functions required to set up the
application to host your various child and parent portals.

64

Chapter 3

07_595636 ch03.qxd 5/10/05 10:05 PM Page 64

Portal Administration

Chapter 3 introduced basic concepts that define a portal in DotNetNuke. This chapter details the
rich features and functions available to customize the look, feel, and function of your DotNetNuke
portal and maintain it throughout its life.

To make this information more practical, examples in this chapter illustrate a real-world
scenario of building a site for a pee-wee soccer team called The Gators. Where applicable, you’ll
not only learn how to do things, but also when and why to do them. As the administrator of a
DotNetNuke portal, you now hold the keys to a powerful resource and you’ll want to know how
to manage it well.

In Chapter 3 you learned about the concept of hosting multiple portals on a single installation of
DotNetNuke. This chapter assumes no knowledge of any portal in the installation other than the
one you are currently administering. As far as the Portal Administrator is concerned, their portal
exists alone in its own corner of cyberspace separate from any other.

Who Is the Portal Administrator?
When the Host creates your portal, a new user is created as well (see Chapter 5). This user is auto-
matically associated with the portal in the Administrator security role and so becomes the default
Portal Administrator. The features discussed in this chapter are available to users who belong to
the Administrator security role (and SuperUsers such as the Host).

There is only one Portal Administrator — you! However, you have the authority to delegate
privilege to other users to perform administrative tasks. Later in this chapter you’ll learn how to
give Administrator access to another user. But regardless of how many users have administrative

08_595636 ch04.qxd 5/10/05 9:59 PM Page 65

privilege, it is the user information of the one Portal Administrator that is used by DotNetNuke. For
example, it is the Portal Administrator’s e-mail address that will appear as the “from” address for all
e-mail sent by the portal and as the default to address for the Feedback module.

Ideally, a Host will not associate the Portal Administrator user with an individual, but rather with an
account. In this way, the user information can be maintained separately and changed for the specific
purpose of managing the portal (like specifying an appropriate e-mail address). The Portal
Administrator account can be used to create additional users with administrative privileges that are
associated with real people.

Where Do I Begin?
Begin at the beginning and go on until you come to the end; then stop. This little piece of advice is as
wise today as it was when the King of Hearts delivered it to the White Rabbit. So we’ll take a cue from
Lewis Carroll and start at the beginning — logging in. Follow these steps:

1. Navigate to your web site. Our example is located at http://soccer.dotnetnuke.com,
although your location will vary.

2. Click the Login link in the upper right-hand corner of the page.

3. Log in to your portal using the Portal Administrator User Name and Password assigned by
your Host. Enter your User Name and Password and click Login (see Figure 4-1).

Figure 4-1

If you’ve entered your User Name and Password correctly, the first thing you will notice upon logging
in is that the screen looks a little bit different than it did before (see Figure 4-2).

Three main differences are immediately visible. The first is the addition of the Control Panel, which
spans the top of the browser window. The second is the layout of the skin panes, and the third is the
addition of the Admin menu. You’ll learn more about panes and skinning in Chapter 13. For now we’ll
focus on the Control Panel.

66

Chapter 4

08_595636 ch04.qxd 5/10/05 9:59 PM Page 66

Figure 4-2

The Control Panel
The Control Panel is primarily a palette of shortcuts to frequently used tasks, most of which are accessi-
ble from elsewhere on the Admin menu. In DotNetNuke version 3.0 it is divided into three main sections
for Page Functions, Adding Modules to the current page, and Common Tasks (see Figure 4-3).

Figure 4-3

In DotNetNuke version 2.1, the Control Panel had far fewer functions and a much thinner profile (see
Figure 4-4). That version of the Control Panel is still an option in version 3.0 at the discretion of the Host.
We’ll discuss it briefly before covering the enhanced version in more detail.

Figure 4-4

67

Portal Administration

08_595636 ch04.qxd 5/10/05 9:59 PM Page 67

You’ll note that the main differences between the Classic (version 2.1) and ICONBAR (version 3.0)
Control Panels are the addition of extra Page Functions, extra Module Options, and Common Tasks.
These differences are pretty straightforward and will become more obvious as you move along. The
remaining difference is the deprecation of the Content check box.

In version 2.1, ill behavior of a poorly written module could result in a rather nasty error message
that would keep a module from being displayed. In this case, it was virtually impossible for a Portal
Administrator to remove the offending module. The Content check box provided a way to instruct
modules not to display their content, which preempted the nasty error message and gave the Portal
Administrator access to the modules settings where it could be deleted from the page. This condition no
longer exists under version 3.0 and so the Content check box does not appear on the ICONBAR version
of the Control Panel. It is no longer necessary.

The only functions on the Control Panel that can’t be accessed through other navigation are the Site
Wizard, Help, and Preview.

The Site Wizard
A slick addition to version 3.0, the Site Wizard is the quickest way to make the most common customiza-
tions for someone new to managing their own web site. It takes you through a short conversational pro-
cess, step by step, with extensive help and the ability to cancel at any time without saving changes.
Standard navigational controls appear on each page of the wizard for Back, Next, Finish, Cancel (with-
out saving changes), and Help.

Clicking the Wizard button in the Control Panel brings you to Step 1 (see Figure 4-5).

Step 1: Choose a Template for Your Site
This optional step gives you the choice of applying a template to your portal. The purpose of a template
is to add predefined functionality and content (pages, modules, and so on) to your site. For example, a
Host might provide a variety of commonly used templates to jumpstart your club web site, family web
site, small business web site, and so on.

Clicking the check box for Build your site from a template (below) enables the list of available templates
just below it (see Figure 4-6). You select a template from the list by clicking on it. If you do not want to
apply a template to your site, simply leave the check box empty.

For advanced users and developers, templates provide a very powerful mechanism
for sharing predefined portal functionality. Templates can carry rich information
including portal settings, security roles, pages, modules, permissions, and so on.
Template creation is a function available to Host Administrators (see Chapter 5).

68

Chapter 4

08_595636 ch04.qxd 5/10/05 9:59 PM Page 68

Figure 4-5

A group of radio buttons at the bottom of the page tell the wizard how to handle any conflicts that might
be encountered during application of a template. A conflict is encountered when an existing component
in your site matches a component that is also specified in the template (for example, when a module’s
title matches that of a module specified in the template). Table 4-1 summarizes the effects of each choice.

Site templates are additive. This means that when you apply a template, it will incorporate those ele-
ments specified in the template into your existing web site. A template will not remove existing pages,
modules, or content except as part of resolving a conflict.

Table 4-1: How to Deal with Duplicate Modules

Ignore If a module of the same name and type as the one in the template already
exists, the template definition is ignored.

Replace If a module of the same name and type as the one in the template already
exists, it is replaced by the definition in the template.

Merge If a module of the same name and type as the one in the template already
exists, the content is appended to the existing module content.

Select the option that best suits your needs. If you are beginning with a new (or empty) portal, the
Replace option would be most appropriate. Remember that you can click the Help button at any time
for assistance.

69

Portal Administration

08_595636 ch04.qxd 5/10/05 9:59 PM Page 69

Figure 4-6

Step 2: Select a Skin for Your Site
This step is where the fun begins! DotNetNuke has powerful skinning capabilities that enable adminis-
trators to choose how their site should look. You can scroll though a list of the skins that are available
and select the look you want applied to your site. If the author of the skin has provided an image for
preview, it will be displayed in a thumbnail format (see Figure 4-7). You can click the thumbnail to view
a larger image.

The skin you select will be applied by default to any page that you add to your site. You’ll be able to
override that choice if you want and we’ll explore that capability a bit later in this chapter. For now just
know that you’ll be able to customize the look of other pages if you want to, even though you have cho-
sen a default for all new pages here.

DotNetNuke comes preinstalled with several variations on its default skin (new for version 3.0). You
can choose a version with vertical or horizontal menus, which display in fixed width or variable
(browser) width and in any of five available colors (Blue, Gray, Green, Red, or Yellow). If your Host has
enabled the option for your portal, you can upload additional skins that you can obtain from a variety of
sources or that you can create yourself.

When you have selected the default skin for your site, click Next.

If you are an advanced user or developer, you can find detailed information on how to create and pack-
age your own skins in Chapter 13.

70

Chapter 4

08_595636 ch04.qxd 5/10/05 9:59 PM Page 70

Figure 4-7

Step 3: Choose a Default Container for Your Site
In this step, you are asked to choose a default container (see Figure 4-8). The default container is auto-
matically applied to every new module that you add to your pages. Just like with your default skin,
you’ll be able to override that choice if you want.

Figure 4-8

71

Portal Administration

08_595636 ch04.qxd 5/10/05 9:59 PM Page 71

The container choices displayed in the wizard represent those that have been specifically packaged for
the skin you chose in the previous step. Because we chose a DNN - Blue skin for our example, the con-
tainer choices are DNN - Blue also. However, clicking the check box for Show All Containers displays all
available containers for every skin that is available to you, so if you want to apply a yellow container as
the default with the blue skin, you are free to do so.

DotNetNuke comes preinstalled with several variations on its default containers for each skin
(new for version 3.0). You can choose a version with complementary background shading or white shad-
ing for the content area and image or text headers. Image headers provide a gradient fill image as the
background for the module title, whereas text headers leave the background alone, matching the content
area shading.

When you have selected the default container for your site, click Next. At this point the wizard has
enough information to display your site if you want to stop, so you could also click Finish.

If you are an advanced user or developer, you can find detailed information on how to create and package
your own containers in Chapter 13.

Step 4: Add Site Details
Table 4-2 lists each field and describes how its value affects your portal.

Table 4-2: Site Wizard, Site Details

Name/Title Name/Title is used in a number of places in the operation of your portal.
Most notably it is displayed in the title bar of the user’s browser window.
It is also used to refer to your portal in outgoing mail for user registration,
password reminders, and so on.

Description Description is used as a default value to populate the HTML META tag for
DESCRIPTION in each page of your site. This tag is important because it
provides search engines (such as Google, Yahoo, and MSN) with an infor-
mative description of your site (or page). The value can be set for each page
individually; however, if it is omitted this default description will be used.

KeyWords Keywords are also used as a default value to populate the HTML META
tag for KEYWORDS in each page of your site. This tag can be useful to help
improve search engine placement. Key words and or phrases should be
separated by a comma. The value can be set for each page individually;
however, if it is omitted these default keywords will be used.

72

Chapter 4

08_595636 ch04.qxd 5/10/05 10:00 PM Page 72

73

Portal Administration

When you have finished adding details for your site, click Next or Finish (See Figure 4-9).

Figure 4-9

Step 5: Choose a Logo
In this optional step you are invited to select or upload an image for your logo (see Figure 4-10). For the
default skins provided with DotNetNuke, the logo will appear in the upper left-hand corner of the
browser window. For this example, leave the logo as unspecified.

Custom skins may place your logo in another location or ignore it altogether (that’s a skin designer’s
choice). You’ll want to make sure your logo looks good on any new skin that you choose.

The File Location and File Name drop-downs provide a simple way to locate the available files in your
portal’s root directory. Changing File Location changes the list of files available (note that only web-
friendly image files will be listed). If your logo file is on your local computer and not your site, you can
choose to upload it by clicking the Upload New File button. The page will refresh to reveal a standard
upload control (see Figure 4-11). Note that you’ll still specify the File Location so the control will know
in which subdirectory to store the image file. Click Save Uploaded File to get the file from your local
computer to your portal, or click Select An Existing File to return to the previous selector.

08_595636 ch04.qxd 5/10/05 10:00 PM Page 73

Figure 4-10

Figure 4-11

When you have finished choosing the logo for your site, click Finish or Cancel.

Having completed the Site Wizard you can now take a look at your newly configured web site by
navigating to any page (try clicking the Home menu item). Because you applied the Club or
Organization Site template in Step 1, the site will now have some additional pages and example content
instead of the empty web site that you began with. You can see the sample Gallery page in preview
mode in Figure 4-12.

74

Chapter 4

08_595636 ch04.qxd 5/10/05 10:00 PM Page 74

Figure 4-12

The Help Button
The Help button is a link that is configured by your Host (see Chapter 5). In the default installation this
link is configured to open the default help page at dotnetnuke.com. Your Host may opt to direct this link
to another site that contains help that is more personalized or relevant to your specific hosting plan.

DotNetNuke has plenty of built-in help for its administrative functions. But the Help button gives
Hosts some ability to create help completely customized for their (and your) purposes and put it right at
your fingertips. For example, a Host-provided help site might have specific information related to their
customized templates available through the Site Wizard.

The Preview Button
The Administrator’s view of the site differs from a regular user’s view because of the need to see skin
panes, edit icons, module actions, and so on. But sometimes you just need to know how things are going
to look to a non-administrative user; this is what the Preview button on the Control Panel is for.

When you click the Preview button, you will notice two things. First, your view of the portal (below the
Control Panel) changes; the pane definitions and the edit options all vanish. Second, the Preview button
icon changes (a plus becomes visible under the magnifying glass) to indicate that you are in Preview mode.

75

Portal Administration

08_595636 ch04.qxd 5/10/05 10:00 PM Page 75

It can be easy to forget that you are in Preview mode, so don’t forget to toggle this setting back off when
you no longer need it.

Configuring Your Portal
Now that your site has basic navigation, sample content, and a chosen look, you’ll want to begin config-
uring other features to make your site special. The Portal Administrator has access to a wealth of config-
uration options for customization of the look, content, and behavior of the site. This section discusses
many of the set-it-and-forget-it types of configuration options. These are things that, for the most part,
you’ll want to include in your initial planning, set, and then leave alone until your next improvement
project. This section also exposes you to a few tools that serve a purpose in both configuration and main-
tenance of your site (which will be covered later in this chapter).

Site Settings
You can reach your site settings in one of two ways, either by clicking the Settings button in the
Common Tasks area of the toolbar or by selecting Site Settings in the Admin menu. There you will be
presented with a page that contains expandable/collapsible categories of configuration options.

There are two important text buttons at the very bottom of the Site Settings page. Because a number of con-
trols on the Site Settings page generate postbacks, you might occasionally be tempted to think that your
changes have been saved — but no changes are saved until the Update button is clicked. The Submit Site
To Google button formats and submits a request for Google to add your site to its search index.

Search engine ranking is based on a number of factors. In order to improve your site’s ranking you
should add appropriate Title, Description, and Keyword text to each page before submitting your site to
Google or any other search engine.

In working with the Site Wizard you already learned about all of the options available under Basic
Settings, Details. So we’ll skip those settings here and move on to the rest.

Basic Settings: Appearance
These settings control the configuration choices that affect the appearance of your site to visitors. Several
of these settings involve the use of a similar selector (see Figure 4-13).

Figure 4-13

This selector utilizes a radio button to specify the source for populating the associated drop-down list
box. The Host may provide skins/containers to all Portal Administrators and/or additional selections
available only to your site (see Table 4-3). If the Host has enabled the Portal Administrator to upload
skins, you’ll be able to add your own and they will be available under the Sites option.

The Preview link button provides a convenient way to see what a skin or container will look like in real
life. Clicking Preview launches another browser window, which opens to the front page of the site using
the option selected. This window should be closed when you have finished previewing.

76

Chapter 4

08_595636 ch04.qxd 5/10/05 10:00 PM Page 76

Table 4-3: Site Settings, Appearance

Logo See the previous section on the Setup Wizard.

Body Background This value is used in the HTML body tag of every page to render a tiled
background image. If the selected skin hides background images, this set-
ting may appear to have no effect. You should leave this field clear if you
don’t intend to use a background image because it does add unnecessary
weight to the rendered page.

Portal Skin This setting specifies the skin for all non-administrator (and non-host)
pages within the site. The skin is applied to all pages in the site where
another skin has not been specifically chosen on those pages’ individual
settings. It also applies by default to all new pages.

Portal Container Similarly, this setting specifies the standard module container for all non-
administrator (and non-host) pages within the site.
The same rules of application and inheritance apply for containers as well
as skins. This choice applies to all modules in the site where another con-
tainer has not been specifically chosen on those modules’ individual set-
tings. It also applies by default to all new modules.

Admin Skin The Admin Skin is the look seen only on administrator (and host) pages
within the site. Typically your choice of Admin Skin should be lightweight to
reduce excessive image transfer and emphasize productivity over pizzazz.
There are a few pages that are owned by the portal that face the public, and
so retain the Admin Skin. These are the default Login page and the Regis-
tration/Membership Services pages. You’ll learn how you can customize
these pages later in this chapter.

Admin Container The Admin Container is the same as the Portal Container but affects only
the administrator (and host) pages.

If the Host has enabled Skin Upload Permissions for Portals, two additional text buttons will appear at
the bottom of the Basic Settings category (Upload Skin and Upload Container). These functions are cov-
ered in detail in Chapter 13.

Advanced Settings: Security Settings
Portal Registration drives fundamental behavior of your site that should be part of your initial design.
Through registration, anonymous site visitors can join (or apply to join) the Registered Users role and be
granted access to privileged content or site functionality. Because the Registered Users role requires reg-
istration and authorization (either explicit or automatic), these functions combine to provide for different
options in the registration process (see Figure 4-14).

Figure 4-14

Your choice of registration type should be based on the functional access requirements for visitors to
your site. Table 4-4 summarizes the choices and how they impact site behavior.

77

Portal Administration

08_595636 ch04.qxd 5/10/05 10:00 PM Page 77

Table 4-4: Site Settings, Security, Portal Registration Options

None Registration is not an available option to site visitors. The Login button
remains visible so that administrative access can be gained; however, the
Registration button is hidden. Often, sites that select this option will
change their skin to move the Login button to a less prominent location
than it normally appears on the default skin. This setting is appropriate for
sites that do not publish privileged content or that process registration
offline.

Private Registrants apply for privileged access to the site. Until authorization is
explicitly granted, access is limited to that of any anonymous user. This set-
ting is appropriate for sites that require approval of registration requests
(for example, a private family web site that invites friends and relatives to
apply). An e-mail is sent to the registrant advising him or her of the private
nature of the site. An additional e-mail is sent upon authorization (if and
when performed).
It is good practice to explain the process for approval of private registration
prominently on your site.

Public Registration is automatically (and immediately) authorized without valida-
tion of the e-mail address. A welcome e-mail is sent to the registrant. This
setting is appropriate for sites that want to track usage but do not require
validation of contact information.

Verified Registration generates a verification code, which is included in the wel-
come e-mail sent to the address supplied by the registrant. Authorization is
granted when the user supplies the verification code at the time of first
login. This process ensures that all registered users have supplied a valid
e-mail address.

You can customize the content of the e-mails generated through the registration process by editing the
appropriate language resources. You’ll learn explicitly how to do this later in this chapter.

Remember that site registration is only the first step available for managing access to privileged content.
Once registered, you can manage a user’s access to pages and modules at a very granular level through
the application of security roles.

Advanced Settings: Page Management
Earlier you learned that some standard pages are owned by the portal. These settings give you the abil-
ity to customize those pages and a few other aspects of your site’s general navigation (see Figure 4-15).

Figure 4-15

78

Chapter 4

08_595636 ch04.qxd 5/10/05 10:00 PM Page 78

Each of the options consists of a drop-down list box for selecting a custom page within your portal. The
None Specified selection for any of these configuration options results in default behavior. Table 4-5
explains the behavioral impact of each setting.

Table 4-5: Site Settings, Page Management

Splash Page When a visitor reaches your site via its alias (for example, http://www
.dotnetnuke.com), the default behavior is to display the Home Page. If a
Splash Page is specified, it will be displayed to the visitor instead. This
affects only the initial landing page for site navigation or invalid links and
does not change the location of Home for other purposes.
It is left to you to determine the appropriate method and timing of redirec-
tion to the Home Page. A typical implementation would be to specify a
page that is defined as a link to a Flash introduction (which redirects when
finished).

Home Page The Home Page is the default target for site navigation (in the absence of a
Splash Page). It is also used as the destination link for the site logo as well
as any other default site behavior that results in redirection to the Home
Page. If no Home Page is specified, the first page in the navigation order
will be used.

Login Page The default Login Page is provided for your convenience, however as a
system page it lacks the capability for skinning and may not be consistent
with the look of your site (it retains the admin skin). If specified, the Login
Page will be used as the target for login requests instead of the default
page. This allows for full customization and skinning including additional
modules and page elements. But don’t forget to include the Account Login
module on the page and be sure the page and module permissions specify
visibility to Unauthenticated Users (or All Users).
If you make a mistake and find yourself unable to access your custom login
page, you can force display of the system login page. Simply add the fol-
lowing query string value to the address in your browser: ctl=Login (for
example, http://www.dotnetnuke.com/default.aspx?ctl=Login).
A simple example of a custom login page would be to include the Account
Login module on the Home Page, visible only to the Unauthenticated
Users role.

User Page The User Page displays a user’s registration information and preferences,
provides for password changes, and lists available membership services. It
is most readily seen by clicking the Registration button or by clicking on
your username if already logged in (see Figure 4-16).
The default User Page is provided for your convenience. As another system
page it has the same skinning limitations and customization characteristics
as the Login Page (see above).
When creating a custom User Page, be sure that the User Account module
is visible to the All Users role. It serves the dual purpose of collecting regis-
tration information for Unauthenticated Users and displaying account
information for Registered Users.

Table continued on following page

79

Portal Administration

08_595636 ch04.qxd 5/10/05 10:00 PM Page 79

Home Directory This display-only field identifies the path to the directory that holds all the
portal’s files. The directory is specified by the Host and represents a loca-
tion relative to the web site root (for example, http://www.dotnetnuke
.com/Portals/1)

This is an opportune time to set defaults for what information is required for users to enter upon regis-
tration. On the User Page, internal functions require that users enter a first and last name, username,
password, and e-mail address. Other contact information fields are optional, but you can choose to
require them by clicking the check box next to the field (as seen in Figure 4-16).

Figure 4-16

Advanced Settings: Payment Settings
These payment settings have been preserved from earlier versions of DotNetNuke for legacy support
purposes. Only the PayPal(r) option is supported using the POST method to emulate PayPal’s Buy Now
button functionality. These settings come into play when public roles are defined with fees or when
online portal signup is permitted.

Several eCommerce store and/or payment components are available for DotNetNuke through third-
party providers. These payment settings will ultimately be deprecated in a future version in favor of a
more robust eCommerce API (see Figure 4-17).

80

Chapter 4

08_595636 ch04.qxd 5/10/05 10:00 PM Page 80

Figure 4-17

Since our Gators will offer at least one premium content area for subscription, you’ll sign up for a PayPal
account and use it to process payments for these services.

Other Settings
This group of miscellaneous settings (see Figure 4-18) has significant impact on several key display char-
acteristics of your portal. Table 4-6 explains the impacts of each setting.

Figure 4-18

Table 4-6: Site Settings, Other Settings

Copyright This setting is used to populate the text of the skin object token
[COPYRIGHT]. In each of the default skins, the copyright notice appears
at the bottom of the page. If your skin does not implement the COPYRIGHT
skin object, this setting will have no effect. For more information on skin
object tokens, see Chapter 13.

Banner Advertising This setting controls the behavior of the skin object token [BANNER]. The
None option nullifies the token, resulting in no display of banners. The
Site and Host options select whether banners are displayed from your por-
tal’s Vendor List or from the Host’s Vendor List. The Host option provides
for leveraging a single Vendor List across all portals. If your skin does
not implement the BANNER skin object, this setting will have no effect.
If you had applied the DotNetNuke template in the Site Wizard, you
would see a banner on the upper-right side of the default skin, which is
a default banner that appears if none exist in the Vendors List.

Administrator Recall that the Portal Administrator’s contact information is used for the
“from” address in outgoing e-mail, the default-to address in the Feedback
module, and so on. You can choose to designate another portal user (who is
also in the Administrator role) as the primary Portal Administrator.

Table continued on following page

81

Portal Administration

08_595636 ch04.qxd 5/10/05 10:00 PM Page 81

Default Language DotNetNuke supports localization of text, dates, and currency within the
portal framework. English and German languages are installed by default
but additional language packs are available. The default language is dis-
played to anonymous site visitors and Registered Users that have not
selected a default language in their own membership settings.

Portal TimeZone DotNetNuke supports localization of time zone similarly to languages. The
default time zone is used for anonymous site visitors and Registered Users
that have not selected a default time zone in their own membership set-
tings. This feature is primarily available for support of modules that may
require it. Timestamps visible in the Log or for create and update events for
individual records are based on server time, rather than localized time.
There are no features in the default installation of DotNetNuke that display
localized time.

The footer area of the default skins contains the [COPYRIGHT] skin object token, which displays the
copyright notice specified in Other Site Settings (see Figure 4-19).

Figure 4-19

Changing the default language setting translates all static portal content (labels, admin and host menus,
date and currency formats) to the language specified. You can even customize the static labels if desired.
Contrast Figure 4-18 and Figure 4-20 to see how the choice of default language affects your portal. Note
that dynamic content (like the text of the Copyright notice) is not translated.

It is worth noting that core support for Multilanguage module content (and versioning) is on the devel-
opment roadmap for a future version of DotNetNuke.

Figure 4-20

Stylesheet Editor
DotNetNuke supports cascading style sheets so that skin and container designers, as well as module
developers, have a means to customize components they provide. The highest level style sheet is
located in the portal’s Home Directory, appropriately named portal.css. The Stylesheet Editor gives
you a convenient way to quickly update any style supported within the DotNetNuke framework (see
Figure 4-21).

82

Chapter 4

08_595636 ch04.qxd 5/10/05 10:00 PM Page 82

Figure 4-21

If you should ever need it, there is a button to Restore Default Style Sheet, which returns the template to
its original settings. Any customizations you have made will be lost, so it’s a good idea to make a
backup copy of this file first.

Security Roles
The DotNetNuke architecture allows you to control access to your content both at the page and the mod-
ule level through the application of user roles. A role can be thought of as a group with a purpose (for
example, Newsletter Subscriber, Gallery Administrator, or Team Member). You’ll learn to apply roles
later in this chapter, but for planning purposes you should consider that roles should address two types
of purposes (that is, permissions): View and Edit.

Some very important security roles are predefined and you can define others as necessary. You are
already acquainted with (and a member of!) the Administrators role. You’ve also touched briefly on the
Registered Users role, which includes all users that have registered on your site and have been autho-
rized, whether by an Administrator, through public access, or verification at login. Figure 4-22 shows the
Security Roles page and predefined roles for a default portal.

Figure 4-22

83

Portal Administration

08_595636 ch04.qxd 5/10/05 10:00 PM Page 83

Two additional built-in roles you will find useful are the Unauthenticated Users and All Users roles. The
Unauthenticated Users role has no explicit definition because it denotes anonymous users who belong to
no real security role at all. Likewise, the All Users role includes both users who are currently logged in as
well as those who are not. You’ll see how both of these roles are used later when working with page and
module permissions.

Your portal may have additional roles based on the template you specified using the Site Wizard earlier
in this chapter.

Creating a New Role
In designing The Gators web site, it was determined that a couple of additional roles would be needed.
You’ll add an opt-out role that all new users are automatically assigned to. The preconfigured Subscribers
role is an example of this, but you’ll create your own in this exercise. You’ll also add a public role for sub-
scription to premium services.

Basic Settings
After you click Add New Role, you’ll wind up on the Edit Security Role page looking at the basic set-
tings (see Figure 4-23). Table 4-7 describes the fields in the basic settings.

Table 4-7: Add New Role, Basic Settings

Role Name and Description The Role Name and Description are visible to Administrators on
the list of Security Roles (see Figure 4-22) and also in the Member-
ship Services area of the Account Profile page if the role is defined
as Public (see Figure 4-25).

Public Role Roles that are defined as Public show up as user-selectable
options in the Membership Services area of the Account Profile
page (see Figure 4-25). This is useful to enable user selection of
optional services.

Auto Assignment If checked, the role is retroactively applied to all existing users
and is automatically assigned to all new users.

You’ll define a role that is used to determine who should receive your monthly newsletter. This role is
automatically assigned to each new user but, as a public role, can be canceled by the user at any time.
Figure 4-23 illustrates the setup of your new role.

Figure 4-23

84

Chapter 4

08_595636 ch04.qxd 5/10/05 10:00 PM Page 84

Alternatively, you might choose not to auto-assign the role in favor of allowing your users to opt-in
specifically. This would be a more acceptable option for marketing-oriented communications because the
default user registration does not currently include the ability to opt-out at the time of signup.

Advanced Settings
You’ll also define an optional role with a fee, which you’ll use to expose privileged content to paid sub-
scribers. The Gators site will provide access to a gallery of photos and for a small fee users can download
high-quality images for printing. For this you’ll need to apply some advanced settings (see Figure 4-24).
Table 4-8 describes the fields in the advanced settings area.

Table 4-8: Add New Role, Advanced Settings

Service Fee This is the fee associated with the service that is enabled via the role. The
fee is applied in the currency specified in your portal settings. If you’ve
specified PayPal as your payment processor, be sure that your account is
set up to accept payments in the chosen currency.

Billing Period (Every) These two fields define how often a user is billed for the service. It may
be a one-time or recurring fee.

Trial Fee You can choose to allow for a trial period for services at a different rate
than the full service amount. Free trial services are often offered for a
limited time.

Trial Period These two fields define the duration of the trial period. When a trial role
is granted, it is given an expiration date that is based on this time period.

You’ll apply a small monthly fee to this role. When users subscribe to it they’ll be taken to the PayPal
web site where they can authorize a payment to your account. Upon completion of the process they will
be transferred back to the home page of your web site. The update to the user’s account is processed
asynchronously.

Figure 4-24

Remove the preconfigured Subscriber role since you’ve just created your own.

Public Roles and Membership Services
Public roles, such as those you defined in the previous section, are made available to users via the
Membership Services area of their User Account page (see Figure 4-25).

85

Portal Administration

08_595636 ch04.qxd 5/10/05 10:00 PM Page 85

Figure 4-25

Delegating Authority and/or Assigning Privileges
Roles that are not public typically define privileged access for users or areas of responsibility for mainte-
nance purposes. We’ll assume you’ve already defined such a role for the person(s) that will maintain the
file download area called Gallery Maintenance. You’ll navigate there by clicking the text button Manage
Users In This Role from the Edit Security Roles page (see Figure 4-26).

Figure 4-26

To add a user to the role, simply select the user in the User Name drop-down and click Add Role. If
appropriate, an expiry date may be specified, after which the role has no effect. The Send Notification
check box (if checked) will result in an e-mail being sent from the Portal Administrator to the user
advising them of their addition to the role.

All users currently assigned to the role appear in the list. Clicking the red x next to any user’s name will
remove them from the role.

Now that you can create roles and assign users to them you’re ready to put those roles to use. In the next
section you’ll create a page that your Gallery Subscriber role can access but a normal registered user
cannot. Likewise, your Gallery Maintenance role should be able to edit the page while others (except
Administrators) cannot.

86

Chapter 4

08_595636 ch04.qxd 5/10/05 10:00 PM Page 86

Pages
Pages are the building blocks of your DotNetNuke portal. They are the real estate where you deposit
content to create an interesting site. You can see them represented in menu items, bread crumbs, and site
links. You’ve already dealt with a number of system pages, but in this section you learn all about creat-
ing and managing pages of your own.

Creating New Pages
The quickest way to create a new page is by clicking the Add button in the Page Functions area of the
Control Panel. You can also create a page by first navigating to the Page List via the Pages item on the
Admin menu and clicking the Add New Page button. Table 4-9 explains the basic settings.

Table 4-9: Add New Page, Basic Settings

Page Name This value appears as the text in the menu item, Recycle Bin, and anywhere
that pages are listed (for example, drop-down selection lists).

Page Title The page title is displayed in the title bar of the user’s browser. It is also
typically used by search engines as a key indicator of relevance. So be sure
to make your page titles fully descriptive of the page content (for example,
Soccer Team Photos for Download).

Page Description You already added a default description back when you imported your
portal template (see Table 4-2). However, it is recommended that you add a
relevant description for each page within your site.

Key Words You already added default keywords as well (see Table 4-2). But again,
unique keywords can improve your ranking for search engines.

Parent Page This property drives the navigation hierarchy of your site*. Any page that
does not have a parent specified will appear as a top-level menu item. Any
page that has a parent specified will appear as submenu item to the parent
page.
Although a page can only have one parent, it is also possible to create a
page that is really just a reference to another (existing) page. So you can ref-
erence the same page from more than one place in the menu structure (see
Link URL in Table 4-10).

Permissions Each role in your portal can be explicitly assigned permissions to view or
edit the page. Edit permissions are the same as those available to the Portal
Administrator (for page-level actions only). View permissions determine
whether the page is displayed to the role (see Figure 4-28).

* You can take this hierarchy as deep as you like, but conventional wisdom tells us that going more than about two levels
deep becomes difficult to navigate. Not every page needs to be accessible from the main menu.

When creating a new page, you will also have the option to copy the structure and/or content of an
existing page (see Figure 4-27).

87

Portal Administration

08_595636 ch04.qxd 5/10/05 10:00 PM Page 87

Figure 4-27

If you have created a page that employs a layout of modules that will be common in your site, it may be
useful to begin development of new pages using that same layout. You can specify which page to copy
and whether or not the module content should be the same. If Copy Content is selected, the modules on
the new page will be shadows of existing modules on the Copy Modules From page. All of the shadow
copies are linked so that changes to any one will update every instance on each copied page. This can be
particularly helpful for things like links modules used for navigation, banner modules displayed on
selected pages, and so on. If unselected, new empty modules will be placed on the page in the same lay-
out and with the same permissions as the page specified to copy from.

Table 4-10 explains the fields in the advanced settings area.

Table 4-10: Add New Page, Advanced Settings

Icon Identifies an image that will be displayed beside the page name in the
menu. Menu text bottom aligns with the images, so 16x16 icons tend to
look best.

Page Skin This optional setting will associate a skin specifically to this page. This is
useful if you have a skin with special formatting or a functional need to
appear different than the rest of your site. If this option is <Not Specified>,
the page inherits the default skin as specified in the Site Settings (see
Figure 4-13).

Page Container Likewise, this setting will associate a default container specifically to
this page.

Hidden This option has nothing to do with the visibility of your page (recall that
visibility is a function of roles that you were introduced to earlier). You
select this option to keep a page from being added to the menu. You may
have many pages that are not part of your top-level navigation but that are
linked in other ways throughout your site.

Disabled If a page is disabled, it is not accessible to any user of the site who is not a
member of the Administrator role. This feature is useful for suppressing
content without manipulating roles (for example, universally hiding a page
until it is updated).

Start Date Specify a date that the page (and menu item) becomes visible. Before the
start date the page will function as if it were disabled.

End Date Specify a date after which the page (and menu item) is no longer visible.
The page will function as if it were disabled.

88

Chapter 4

08_595636 ch04.qxd 5/10/05 10:00 PM Page 88

Link Url This option allows you to change the target of your page. The default is a
URL with no specified location, which is interpreted as an internal page.
URL: Your menu item will act as a direct link to the target URL specified.
Page: Your menu item will act as a link to an existing page in your site.
This option enables you to create multiple navigational items that point to
the same place (for example, a descriptive page that applies to multiple
products).
File: Your menu item will act as a link to a file in your portal root (for
example, a link to a PDF document or image).

Securing Privileged Content
Earlier in this chapter you learned to create security roles to logically group users. Page (and module)
permissions allow you to give privileges to those groups of users. You’ll note that the built-in
Administrator role always has both View and Edit permissions on every page.

Figure 4-28 illustrates the permissions that you’ll apply to The Gators Gallery page. By giving All Users
View Page permissions, even anonymous users browsing the site will have access to the menu item and
the page. And you’ll give edit access to the Gallery Maintenance role, which will have responsibility for
keeping this page current (for example, adding new photos).

Figure 4-28

The permissions specified in Figure 4-28 only secure the edit privilege of the page. You’ll recall that The
Gators also have a paid role for Gallery Subscribers, which should give them access to premium content.
When those pages are created, you’ll uncheck All Users and give View Page permissions to the Gallery
Maintenance and Gallery Subscriber roles.

Now You See It, Now You Don’t
The Unauthenticated Users role can be quite useful. It allows you to present a completely different
view of your site to an anonymous user than to your registered users. If View Page permissions are
assigned only to the Unauthenticated Users role, they will essentially disappear from view once a user
is logged in.

89

Portal Administration

08_595636 ch04.qxd 5/10/05 10:00 PM Page 89

90

Chapter 4

One way of applying this concept is to define a splash page (shown previously in Figure 4-15) such that
its View permissions are set only for Unauthenticated Users. This creates a landing page that is no
longer visible once a user is logged in, but preserves the behavior of the home page after login. Further,
if the specified home page is set only for Registered Users, its information remains private and the
splash page functions as a home page for the anonymous user.

Take care when planning your site’s navigation using the Unauthenticated User role. You wouldn’t
want to hide a menu item if it had submenu items that you wanted to keep visible!

Changing Navigational Structure
You’ve used the Parent Page setting to specify navigational structure. But if that was the only mecha-
nism you had to reorganize your site it would be a little challenging. So the other method involves the
Pages list, which you can reach by selecting Pages from the Admin menu (see Figure 4-29).

Figure 4-29

This list displays all the pages in your site in an organization that closely matches your menu structure.
Items at the top of this list are leftmost in your menu, moving right along the menu as you move down
in the list. Items that are indented (for example, . . . Subscriber Downloads) is an indication of submenu
items. The buttons available on the right provide a means to change the defined parent of a selected
page, moving it (and all its children) up or down within the menu hierarchy or changing its (and all its
children’s) position in the parent/child relationship. You can also choose to Edit or View a page as well.

Regardless of the visibility settings of the page (whether by start/end dates, enable/disable, hidden/
unhidden), it will appear in this list. And so the menu hierarchy can become more difficult to see if
you have a large number of pages on your site. For this reason, it may be advantageous to define a few
phantom pages for organizational purposes. For example, you might define a hidden page called
Orphans and assign it as the parent to pages that are suppressed from the menu.

08_595636 ch04.qxd 5/10/05 10:00 PM Page 90

Skins
The Skins page, accessible from the Admin menu, gives you the ability to browse and apply skins and
containers to customize the look of your site (see Figure 4-30). You’ll recall learning a bit about this
functionality within the context of the Site Wizard, but you can access this functionality directly through
this page.

Figure 4-30

You can specify whether the drop-down containers will list Host and/or Site–supplied skins. If your
Host has enabled the option, you may also see buttons to Upload Container and Upload Skin (otherwise
these buttons will not be visible to you). Clicking the Restore Default Skin button changes your site’s
default settings to those originally specified by your Host.

Selecting a skin or container from their respective drop-downs displays the available selections in a
gallery format (see Figure 4-31). If provided by the designer, the galleries will include thumbnail pre-
views and the skin gallery will include associated containers.

If you’d like to know more about development of custom skins and containers, this topic is covered
extensively in Chapter 13.

From the gallery you can click a thumbnail image to see a larger image (if provided by the designer).
You can also see how a skin or container would look on your home page by clicking Preview, or go
ahead and set it as the default for the portal by clicking Apply. You’ll have the option to specify whether
this should be applied to Admin and/or Portal pages in a check box below the gallery. If you selected a
Site skin from the drop-down, you’ll have the option to delete individual skins and containers as well.

If the skin designer included an about.htm file in their package, you’ll also see an About <skin name>
button below the gallery. Clicking this button opens the designer-supplied file.

If you have pages with modules placed just the way you like them, be careful about changing your skin.
If you specify a skin that has a different pane layout than the one you are currently using, DotNetNuke
won’t know where to put some of those modules and will put them in the ContentPane by default.
Changing back to the old skin will not restore the original position because the damage will have already
been done. If you’re experimenting with skins on a page with lots of content, make a copy of your exist-
ing page first and experiment on that. Or just stick with the Preview option in the gallery.

91

Portal Administration

08_595636 ch04.qxd 5/10/05 10:00 PM Page 91

Figure 4-31

File Manager
File management is an area that is radically improved in version 3.0. Prior to introduction of the File
Manager, all files were maintained in a flat structure in the portal root directory, which could easily
become unwieldy. Now files can be managed in subdirectories and those directories can be protected
through role-based permissions.

Figure 4-32 shows the basic features of the File Manager. Most operations are intuitive and the interface
is pretty forgiving, providing feedback if you do something incorrectly. Group file and folder operations
require that you select either a group of files or a folder first.

Folder Permissions
In Figure 4-32 you can see that there are multiple folders within the portal root. By default, only the
Administrator role has permission to either view or write files in all of these folders. So if you want your
Gallery Administrator to be able to upload photos, you’ll want to grant that role appropriate permis-
sions (see Figure 4-33).

These security settings are applied everywhere that the DotNetNuke file management controls are used.
You’ve seen these controls in the Portal Administrators interface in a number of places, including the
logo file selector in the Site Wizard (shown previously in Figure 4-11). These same controls are used in
many modules (for example, the Documents module), which you will learn more about in Chapter 6.

92

Chapter 4

08_595636 ch04.qxd 5/10/05 10:00 PM Page 92

Figure 4-32

Figure 4-33

The Gallery Administrator will need permission to select files from the drop-down in order to add pic-
tures to the gallery, and will also need to be able to write to the folder to upload new photos. So be sure
to grant both View and Write permissions to the Gallery Maintenance role for the Photo folder.

Note that in Figure 4-34, both the Root and Photo folders are available to the file upload control. Access
to the portal root directory is provided by default to preserve functionality for users upgrading from
version 2.x to version 3.0. It is recommended that upgraded sites review their file and folder manage-
ment policies.

Figure 4-34

93

Portal Administration

08_595636 ch04.qxd 5/10/05 10:00 PM Page 93

Uploading Files
If you click the Upload button in the File Manager, you’ll find yourself looking at the original
DotNetNuke file upload page. This upload control provides a lot of rich functionality and is used in
many places within DotNetNuke for uploading various component packages like modules, skins, lan-
guage packs, and so on. Here you’re looking at the control in its plain vanilla state, waiting for you to
specify generic files to upload (see Figure 4-35).

Figure 4-35

The File Upload control includes a drop-down to specify the target directory and an Add button that
captures input from the basic file selector and includes it in a list of files to upload. This feature enables
you to upload multiple files in one upload step.

The check box for Decompress ZIP Files allows you to upload a zipped file (preserving bandwidth) that
is unzipped for you into the target directory. Note in Figure 4-35 that an invalid file type was stopped
from unpacking in this upload. Both individual files and the content of zip files are matched against an
allowable file types list, which is configurable by the Host.

Using FTP with File Manager
The File Manager provides a convenient way to move files through the interface. However, for bulk
operations you may prefer to utilize FTP to transfer files (if permitted by your Host). If files are added
to your site through any means other than the file upload interface, you’ll need to click the Synchronize
Database And File System button. This command instructs DotNetNuke to iterate through the portal
root and resolve for any files and folders that may be added or missing. Your Host may have enabled a
scheduled job to perform this synchronization for you on a periodic basis, but if you do it yourself you’ll
see those files in your drop-down lists immediately.

94

Chapter 4

08_595636 ch04.qxd 5/10/05 10:00 PM Page 94

Languages
Languages and localization features are primarily controlled by the Host account; however, the Portal
Administrator does have limited control to override localization strings and to define the default lan-
guage for your portal. These settings are specific to your portal and therefore no mechanism is provided
to export or import these changes.

Changing Your Default Language
Recall that you set the default language for your site earlier in this chapter. The default language is used
in cases where the user has not been authenticated, and therefore does not have a preferred language of
their own. Also, the default language will be used as the default choice for the preferred language when
a new user registers on the portal. The default language is controlled from the Site Settings page, as
shown previously in Figure 4-18. Once users log on to the site (this includes the Portal Administrator
and Host accounts as well), their preferred language will be used instead of the default language.

The Language Editor
To create custom localization strings for the portal, select Languages from the Admin menu. The Custom
Portal Locale screen (see Figure 4-36) provides the ability for Administrators to customize resource
strings for any of the installed locales.

Figure 4-36

The tree on the left-hand side of the screen allows you to easily navigate to any resource file. Each
resource file corresponds to the various controls or shared resources in the portal. The first time you
attempt to edit a resource file, you are asked to verify that you want to create a custom resource file
(see Figure 4-37). The resource file will be saved in the directory alongside the other resources.

Resource files are named using a standard pattern based on the associated file: [FileName].resx for
English resources, [FileName].[Culture].resx for non-English resources. When portal-specific
resource files are created, the system prepends the .resx extension with Portal-[PortalID]. In the example
from Figure 4-37, the local portal copy of the English resource file would be named
SkinControl.ascx.Portal-0.resx. The German (Deutsch) version would be named
SkinControl.ascx.de-DE.Portal-0.resx.

When the portal-specific localized file is created, all resource strings are included. Once the portal
resource file is created, any changes in the comparable host file are overridden by the portal file, even if
the portal file strings were not changed. In Figure 4-38 the values for Host.Text, Preview.Text, and
Site.Text are written to the resource file when the portal file is created.

95

Portal Administration

08_595636 ch04.qxd 5/10/05 10:00 PM Page 95

Figure 4-37

Each resource displays the Resource Name, Default Value, and Localized Value. The Resource Name cor-
responds to the key used by the portal for looking up the localized value. The default System Locale for
DotNetNuke is English (en-US). The English language resources are used for all default values.

Localized values correspond to the locale selected in the Available Locales drop-down list box. Localized
values can be edited directly using the associated textarea boxes. Once you have completed editing the
localized values, click the Update link button to save your changes.

This works well for simple strings and allows you to edit multiple strings without requiring multiple
postbacks to the server. Long strings, or resource strings that contain HTML are more difficult to edit
using the textarea boxes. To edit these resources, click the arrow button to the right of the textarea.

Figure 4-38

96

Chapter 4

08_595636 ch04.qxd 5/10/05 10:00 PM Page 96

Because the button will cause a postback to the server, and we are not yet ready to save changes for the
associated localized value, you may lose any data that has been changed but not updated. To prevent data
loss, DotNetNuke will display a dialog (see Figure 4-39) asking you to confirm that you want to proceed.

Figure 4-39

Click Cancel to return to the main editing screen in order to save any pending changes. Click OK to pro-
ceed to the Language Editor screen (see Figure 4-40).

Figure 4-40

97

Portal Administration

08_595636 ch04.qxd 5/10/05 10:00 PM Page 97

The Language Editor uses the HtmlEditorProvider defined in the web.config file. The editor provides
advanced text and HTML editing functionality. (See Chapter 8 for more information about using the
HTML Editor.) Once you have completed making changes to the resource string, select Update to save
your changes and return to the Custom Portal Locale screen, or select Cancel to discard your changes
and return.

Customizing Your E-mail Templates
Most Portal Administrators will choose to keep almost all of the default resource strings for their web
site. However, you should at least review the standard system messages used for generating e-mails to
your web site users. Previous versions of DotNetNuke provided a central location for managing the
e-mail templates used by the system. In DotNetNuke 3.0, these templates were incorporated into the
resource files so that they could be localized like other static elements of the portal.

Because static e-mail templates would not be very useful, DotNetNuke supports the use of special
tokens, which will be replaced at runtime with the specified property value. DotNetNuke currently rec-
ognizes six different tokens (see Table 4-11) that follow the pattern [TokenName:Property]. Valid proper-
ties for each of these tokens are defined in Appendix C.

Table 4-11: E-mail Template Tokens

Token Name Description

Host The Host token provides access to a limited set of HostSettings properties.

Portal The Portal token provides access to the PortalSettings properties. This
token also supports the URL property that corresponds to the HTTP Alias
for the current portal.

User The User token provides access to UserInfo properties. This token also sup-
ports the VerificationCode property, which is dynamically generated based
on the Portal ID and User ID in the form [PortalID]-[UserID]. The user
token is not valid for all templates.

Membership The Membership token provides access to UserMembership properties.
This information is specific to the currently selected user. The Membership
token can only be used for templates that also support the User token.

Profile The Profile token provides access to the UserProfile properties. This infor-
mation is specific to the currently selected user. The Profile token can only
be used for templates that also support the User token.

Custom The Custom token is used when arbitrary data needs to be included in the
template. The data is passed as an ArrayList and is specific to each e-mail
template. Not all templates support the use of custom values.

Table 4-12 describes each of the e-mail templates supported by the core portal. These templates can all be
found in the global resources file (\App_GlobalResources\GlobalResources.resx).

98

Chapter 4

08_595636 ch04.qxd 5/10/05 10:00 PM Page 98

Table 4-12: Site-Generated E-mail Templates

Resource User Token Custom Token

EMAIL_USER_REGISTRATION_PUBLIC_SUBJECT Yes None
EMAIL_USER_REGISTRATION_PUBLIC_BODY

Sent to users when they register on a site that is not set
to Private Registration. This e-mail is also sent when a
registration is manually authorized.

EMAIL_USER_UNREGISTER_SUBJECT Yes None
EMAIL_USER_UNREGISTER_BODY

Sent to the Portal Administrator when a user is unregis-
tered whether by user self-service or through deletion.

EMAIL_SMTP_TEST_SUBJECT No None

Sent to the Host when testing SMTP configuration.

EMAIL_PORTAL_SIGNUP_SUBJECT Yes None
EMAIL_PORTAL_SIGNUP_BODY

Sent to the new Portal Administrator whenever a portal
iscreated, whether by the Host or by a user when they
sign up for a portal as a free trial (Host option).

EMAIL_USER_REGISTRATION_PRIVATE_SUBJECT Yes None
EMAIL_USER_REGISTRATION_PRIVATE_BODY

Sent to the user at the time of registration, only on sites
where Private Registration is set. This is the e-mail that
should explain your approval policy.

EMAIL_USER_REGISTRATION_ADMINISTRATOR_SUBJECT Yes None
EMAIL_USER_REGISTRATION_ADMINISTRATOR_BODY

Sent to the Portal Administrator on every registration.

EMAIL_PASSWORD_REMINDER_SUBJECT Yes None
EMAIL_PASSWORD_REMINDER_BODY

Sent to the user when a reminder is requested.

EMAIL_ROLE_ASSIGNMENT_SUBJECT Yes None
EMAIL_ROLE_ASSIGNMENT_BODY Yes 0: RoleName

1: Description

Sent to the user when a role is assigned by the Administrator
and the Send Notification option is checked.

EMAIL_ROLE_UNASSIGNMENT_SUBJECT Yes None

EMAIL_ROLE_UNASSIGNMENT_BODY Yes 0: RoleName
1: Description

Sent to the user when a role is removed by the Administrator
and the Send Notification option is checked.

Table continued on following page

99

Portal Administration

08_595636 ch04.qxd 5/10/05 10:00 PM Page 99

100

Chapter 4

EMAIL_AFFILIATE_NOTIFICATION_SUBJECT No None

EMAIL_AFFILIATE_NOTIFICATION_BODY No 0: VendorName
1: AffiliateID

Sent to the affiliate when the Send Notification button is
clicked on the Edit Vendor page.

The Privacy Statement and Terms of Use
Like e-mail templates, the Terms of Use and Privacy Statement resources are also another set of resources
that you are likely to need to customize (see Table 4-13). Because these two resources are generic to the
entire web site, the User, Membership, Profile, and Custom tokens are not usable. Links to the terms and
privacy statement are included in the default skins (see Figure 4-19).

Table 4-13: Terms of Use and Privacy Statement Resources

Resource User Token Custom Token

MESSAGE_PORTAL_TERMS No None

MESSAGE_PORTAL_PRIVACY No None

Maintaining Your Portal
Once you have your portal set up and working just the way you want it, you’ll start finding good rea-
sons to enhance or change things. You’ll delegate maintenance work to others; you’ll pick up some site
advertising or want to track affiliate referrals; you’ll want to communicate with your registered users;
you’ll want to recover work that you’ve previously discarded; and you’ll want to know what kind of
traffic your site is getting.

You’ve already experienced a very feature-rich environment for configuration of your portal’s look, feel,
and function. DotNetNuke provides an equally rich suite of tools for maintenance tasks as well.

User Accounts
Figure 4-18 introduced you to the User Details page, which provides for user self-management. The
Portal Administrator is also able to manage users from the User Accounts page on the Admin menu.
Figure 4-41 shows the list of users as seen on the User Accounts page.

The page supports several methods of finding a user, which is helpful when your number of registered
users becomes large. Clicking a letter filters the list by username, displaying a maximum of the number
of records specified in the drop-down in the upper-right corner of the page. Standard buttons will
appear for First, Previous, Next, and Last if there are enough users in the list to require paging. If you
need to find a specific user, the search box can accept either a username or an e-mail address.

08_595636 ch04.qxd 5/10/05 10:00 PM Page 100

Figure 4-41

Depending on the type of Portal Registration Options you selected (see Table 4-4), you may have partic-
ular interest in finding unauthorized users. Private registration requires the Portal Administrator to
manually approve users so the button to list them, the check box to indicate them, and the button to
delete them are handy features. Once you’ve listed the unauthorized users and approved the ones you’d
like to permit access, you can click Delete Unauthorized Users to remove the remaining registrations
you’ve deemed inappropriate for your site.

When you click the pencil icon next to a user’s name you’ll find yourself on the Edit User Accounts page
(see Figure 4-42). This page is similar to the User Account page in Figure 4-16, but it differs in a couple of
key ways. There is a check box to flag the user as Approved or not and the Membership Services control
is missing in favor of a link button to Manage Roles for This User.

In previous versions of DotNetNuke it was possible to change the name of a user, but this feature is not
present in version 3.0. The default Membership Provider used by DotNetNuke incorporates an
ASP.NET 2.0 component (MemberRole) with lots of sophisticated security features. One of the security
tenets of this component prohibits changing of a user’s identity once it is set.

In support of the Private Registration option, checking Authorized causes an e-mail to be sent to users
providing them with their login credentials and a welcome message.

The Preferred Language and Time Zone settings work exactly as they do for the Site Settings (see Table 4-6).
These settings will override the default site settings when the user is logged in.

Managing Security Roles
Earlier in this chapter you were introduced to managing security roles within the context of the list of
roles (see Figure 4-26). When approaching this task from the list of users, the Manage Roles For This
User button brings you to a similar page (see Figure 4-43).

101

Portal Administration

08_595636 ch04.qxd 5/10/05 10:00 PM Page 101

Figure 4-42

Figure 4-43

You can assign a role to your user along with an expiration date (if desired), or remove existing roles.
You can also choose whether or not you’d like the user to receive e-mail notification of the change.

102

Chapter 4

08_595636 ch04.qxd 5/10/05 10:00 PM Page 102

Vendors
At some point, you may want to develop partnerships with others in promoting your web site and/or
complimentary products and services. DotNetNuke provides a number of built-in features to get you
started in developing these relationships.

The Vendor management features provide a lot of basic functionality, but for enterprising developers
there is also a lot of room to build on this foundation to provide additional services.

Creating a New Vendor
Open the Vendor List page by selecting Vendors from the Admin menu (see Figure 4-44). You can select
Add New Vendor from the bottom of the page or from the action menu.

On the Edit Vendors page (not pictured), you’ll add basic contact information for the vendor as you
would for any user. You’ll also have the option to specify a vendor’s web site, logo, key search words,
and classification.

At the time of this writing, most of these optional fields are unused. However, they are reserved for
future use as DotNetNuke architecture/services continue to develop in this area.

Figure 4-44

Banner Advertising
Once a vendor has been added, you can create banners for them that can be displayed on your site.
Navigate to the Edit Vendor page for your vendor, expand the Banner Advertising section, and click
Add New Banner. Table 4-14 explains the settings.

Table 4-14: Edit Banner Settings

Banner Name This value identifies the banner in lists, but it is also used as the ALT text
for graphic banners and as hyperlinked text on text banners.

Banner Type Of the available banner types, only two really impact how the banner fields
are used. When you place banners on your site with the Banner module,
you’ll select which type of banner it should display. Choosing Banner,
MicroButton, Button, Block, and Skyscraper just provides logical groupings

Table continued on following page

103

Portal Administration

08_595636 ch04.qxd 5/10/05 10:00 PM Page 103

of banners that fall into common width and height formats. There are no
actual rules, but these groupings help to organize banners so that you don’t
wind up displaying wide banners in button-sized locations in your skin.
Text and Script types are special cases. If you choose a Text banner you can
mimic the look of Google AdSense (see Figure 4-45). Choosing a Script ban-
ner allows for freeform HTML in the text box, which is helpful for a num-
ber of generated links for things like Amazon products.

Banner Group This value serves to further aid in the ad-hoc grouping of banners. For
example, DotNetNuke.com displays rotating button banners for its spon-
sors. To keep sponsor buttons separate from other banners, they each have
Sponsor in their Banner Group field. Likewise, the Banner Options for the
module specifies Sponsor in its Banner Group.
Since this field is ad-hoc, there is no real way to track how or where it is
used. You’ll have to keep up with that on your own. But it does provide for
all the logical separation you should ever need.
Be on the lookout for continued enhancements to these features!

Image Specify whether your image (if applicable) is to be rendered from a file on
your site or from a remote URL.

Text/Script The text in this field is handled differently depending on the Banner Type
selected above. For most banner types you’ll just leave this field blank. For
type Text, this value will appear as simple text (unlinked) below the hyper-
linked Banner Name field (see Figure 4-45). For type Script, this field can
contain raw HTML, supporting a variety of link types and formats.
Field length is limited to 1000 characters.

URL If this value is populated, it will be used instead of the URL associated with
the vendor. So you can use this URL to point to specific pages in a vendor’s
site or to configure extra query string parameters. This field is also dis-
played as hyperlinked text on banners of type Text (see Figure 4-45).

CPM/Cost At the time of this writing, the CPM value is not used for any calculation.
However, it does provide a convenient place to record this information in
the context of the banner.

Impressions If specified, this value is one of the criteria used to determine whether a
banner should or should not be shown. If you want to limit a banner’s dis-
play based on the number of impressions, this field will remove it from
rotation once this value has been reached.

Start Date Use this field to set up banners in advance to begin displaying at a future
date.

End Date Together with Start Date, you can create banners to run for specific date
durations for events, special deals, holidays, and so on.

104

Chapter 4

08_595636 ch04.qxd 5/10/05 10:00 PM Page 104

Criteria This choice specifies how the Impressions and Date constraints should be
enforced. If enforced independently of one another (OR), a banner will
cease to display outside of its date constraint or even within its date con-
straint if the number of impressions has been reached. If enforced jointly
(AND), all criteria must be true for the banner to cease display.
The AND option helps to address a lack of throttling control. On a busy site
with few banners in rotation, a given number of impressions can be
chewed up very quickly and so displayed over only a brief time period. By
jointly evaluating the criteria, a more equitable rotation is achieved by pro-
viding for additional banner impressions during the time period.

Figure 4-45

You can advise vendors of the status a banner by clicking the Email Status to Vendor button at the bot-
tom of the Edit Banner page. This sends an e-mail to the address specified in the Vendor details, which
relays the banner field information (text, costs, and constraints) and performance (view and click-
through counts).

Vendors as Affiliates
Just as your site links to vendors through the use of banners, your vendors may also link to you. If you
would like to be able to track your vendors’ click-through performance to your site, you can click Add
New Affiliate. Define a tracking period and associated cost per click (CPC) and cost per acquisition
(CPA) and e-mail the vendor their link information by clicking Send Notification (see Figure 4-46).

Figure 4-46

105

Portal Administration

08_595636 ch04.qxd 5/10/05 10:00 PM Page 105

The CPC information for affiliate referrals will be summarized in the Edit Vendor list, just as click-
through is for banners. However the CPA information is currently unused. You can specify multiple
affiliate relationships under a single vendor to provide for tracking during discrete time periods.

At the time of this writing, it is possible to create affiliate referrals with overlapping date ranges. This
will produce double counts of vendor performance during the period of overlap. So be sure to end one
affiliate period before starting another.

Newsletters
Periodically, you’ll want to communicate with your users. The Newsletter page provides a very conve-
nient way for you to do this by allowing you to send e-mail to users in specified roles (see Figure 4-47).
Remember when you set up the Newsletter Subscribers role? Here’s where you put that to use.

Figure 4-47

Just select the role(s) that you want to be included in the distribution. If a user belongs to more than one
role, they’ll still only get one e-mail. You can also specify additional recipients separated by semicolons
in the Email List field. And you can format your e-mail as either text or HTML.

Figure 4-48 displays the advanced e-mail options, which include sending a file attachment and choosing
the priority setting. The Send Method option allows you to specify whether or not your e-mail is person-
alized. Choosing the BCC method sends just one e-mail, which will be delivered to all users. Choosing
the TO method causes your e-mail to be personalized (for example, Dear John Doe).

Using the TO method seems much more personal, but it comes at a cost. First, the processing required
to create a separate e-mail for each user could be significant (with large user volume). Second, it signifi-
cantly increases your bandwidth utilization. The bandwidth associated with the BCC method is mini-
mal — just one e-mail. However, the bandwidth associated with the TO version is the product of the
size of the e-mail and the number of users.

You can also choose whether the sending of e-mail is processed synchronously or asynchronously. If you
have a large list of users, asynchronously probably makes the most sense. In either case, a summary e-mail
is sent to the Portal Administrator reporting on the number of recipients, number of pieces of e-mail actu-
ally sent (1 or n), and the start/stop times for processing the job. DotNetNuke batches e-mail addresses
into groups in the background so you’ll never actually be trying to send an e-mail with thousands of BCC
recipients.

106

Chapter 4

08_595636 ch04.qxd 5/10/05 10:00 PM Page 106

Figure 4-48

Site Log
The Site Log displays text-based reports only, as shown in Figure 4-49.

Figure 4-49

Table 4-15 identifies the available report types.

Table 4-15: Site Log Report Types

Affiliate Referrals Track referrals from vendors who are defined as affiliates. By using their
affiliate ID numbers in links to your site, you’ll be able to capture how pro-
ductive those affiliate links are.

Detailed Site Log This detailed log of site activity includes all users and displays date and
time, user name, referrer, user agent, user host address, and page name.

Table continued on following page

107

Portal Administration

08_595636 ch04.qxd 5/10/05 10:00 PM Page 107

Page Popularity Display the total number of visits to the pages on your site in the period
specified. Date and time of the last page visit is included.

Page Views By This series of reports provides a summary of the number of visitors
(anonymous) and users (logged in) that accessed your site in the intervals
specified (Day, Day of Week, Hour, Month).

Site Referrals Summary list of web pages (including search engines) that users have
clicked on to lead them to your site.

User Details This series of reports provides a summary of the number of page visits
recorded according to the characteristic specified (Agents, Frequency, Regis-
trations by Country, and Registrations by Date). The Report by Frequency can
be interesting — it identifies your most frequent visitors in any given period.

Logging occurs at the discretion of the Host, who has a number of options for how it is configured. If the
Host chooses to generate text-based log files (like IIS logs), these reports will become obsolete because
they work only with database logging information (at this time). See Chapter 5 for more information on
Host settings that control logging.

Recycle Bin
Have you ever deleted a file on your computer only to experience a panic moment? Portal Administrators
might feel that too once in a while, which is why DotNetNuke has a Recycle Bin feature (see Figure 4-50).

Figure 4-50

The act of deleting a page or module doesn’t really delete anything; it merely sets a flag that DotNetNuke
understands internally as deleted and so ignores it in the general interface. Items that have this flag set
can be found (and restored from) the Recycle Bin.

Developers can see this implementation by looking at the database fields Tab.IsDeleted and
Modules.IsDeleted.

108

Chapter 4

08_595636 ch04.qxd 5/10/05 10:00 PM Page 108

Recycling Pages
You can select single or multiple pages to restore or delete. However, when doing either you must follow
the hierarchy of the pages in order for it to work. If you think about this, it makes perfect sense, but it is
not obvious. In the example in Figure 4-50 the Team Info page was the parent to the others (in the menu
structure). If you attempt to restore the Game Schedule page first it would have nowhere to go, so you
would receive a warning like that shown in Figure 4-51.

Figure 4-51

Likewise, if you try to permanently delete the top-level page (Team Info) before deleting the child pages,
you would receive a warning like the one in Figure 4-52.

Figure 4-52

You’ll note that when a page is deleted its modules do not appear listed individually in the Recycle Bin.
That’s because a page is considered to include all of its content (which is restored along with it).

Recycling Modules
When modules are deleted, they lose their association to a specific page. So when they are restored you
must select a target page for them to appear on.

Currently, a restored module will have the same view and edit permissions that it did originally.
However, this may not be what you have in mind if you are restoring a module that has been in the
Recycle Bin for a while. In fact, since there is no convenient way to look at a module that is in the bin,
you might be just restoring one to see what it was! The best way to do this is to restore modules to a
page that is not visible to your users (a staging page). Then you can check it out for yourself and change
whatever settings are necessary before moving it to its final (visible) home.

Modules are always restored to the ContentPane on the target page (shown previously in Figure 4-12).
Because a skin designer can create virtually any number of panes in a skin, DotNetNuke can only rely
on the existence of this one required pane. This is one more reason why it’s a good practice to restore
modules to a staging page before relocating them.

Cleaning Up
As you might have gathered, it’s possible to accumulate quite a bit of junk in the Recycle Bin if you do
a lot of creating and deleting of pages/modules. It’s a good idea to do a little housecleaning here every
once in a while so that when you really need it, the Recycle Bin is easier to navigate.

Log Viewer
The Log Viewer gives a Portal Administrator the ability to monitor a variety of events and associated details
including (but not limited to) exceptions. Out of the box, DotNetNuke is configured to log exceptions only;
however, any of the (approximately) 48 defined events can be logged at the discretion of the Host.

109

Portal Administration

08_595636 ch04.qxd 5/10/05 10:00 PM Page 109

A single set of logs is implemented as a group of XML files that are located in the default portal root
directory. Records from these files are filtered to display only those generated by your portal. The Portal
Administrator can filter the list by event type, limit the size of the list displayed, and even e-mail list
contents to a specified recipient if assistance is needed (as shown in Figure 4-53).

When sending log entries, the body of the e-mail message is populated with the XML text exactly as it
appears in the log files.

Figure 4-53

To view the full set of default logs, take a look at the following files:

\Portals_default\Logs\Application.xml.resources
\Portals_default\Logs\Exception.xml.resources
\Portals_default\Logs\Scheduler.xml.resources
\Portals_default\Logs\Log.xml.resources

For an in-depth review of logging, see Chapter 8.

110

Chapter 4

08_595636 ch04.qxd 5/10/05 10:00 PM Page 110

Clicking an entry in the Log Viewer expands it to show the full details of the event. Some events contain
as little as one or two items of detail, however some contain many more. The event detail for a module
load exception is illustrated in Figure 4-54.

Figure 4-54

Summary
In this chapter you learned just about everything there is to know about the Portal Administrator and
the features and functions available to you in that role. Key features that you should understand include
the following:

❑ Control Panel

❑ Site Wizard, Preview Mode, and Help

❑ Preview Mode

You should be familiar with the tools available to configure your portal, such as the following:

❑ Site Settings

❑ Security Roles

❑ Pages

❑ Skins

❑ File Manager

❑ Languages

111

Portal Administration

08_595636 ch04.qxd 5/10/05 10:00 PM Page 111

And the tools available to maintain your portal over time:

❑ User Accounts

❑ Vendors

❑ Newsletters

❑ Site Log

❑ Recycle Bin

You should have some understanding of how to do things, and when and why to do them as well.

112

Chapter 4

08_595636 ch04.qxd 5/10/05 10:00 PM Page 112

Host Administration

In Chapter 4 you learned just about everything there is to know about administering a DotNetNuke
portal. In this chapter you learn everything there is to know about administering a collection of por-
tals, their environment, and runtime features.

As the Host you function essentially as the “creator” of the DotNetNuke universe in which the
portals exist. While a lofty sounding role, it is an accurate description because the Host has abso-
lute sway over what portals within their installation can and cannot do. Where each Portal
Administrator is subject to the “laws of nature” established by the Host, the Host has complete
authority to change those laws at will. Some of those laws apply to all portals in the installation
universally, but others will apply discretely to individual portals.

Understanding the Host role is very important. While the Portal Administrators consider their
portal to be alone in its own corner of the cyber-universe, the Host knows otherwise. Host options
provide for differentiation between one installation of DotNetNuke and another. Configuration
choices made by the Host can affect function and performance of all portals and must therefore be
made wisely and with deliberate intent.

Upon completion of this chapter, you’ll know everything you need to know as a Host to effectively
configure and manage an installation of DotNetNuke.

Who Is the Host?
Continuing with the Host as “creator” analogy could get you in trouble in some circles (not to
mention with your editor!). Since DotNetNuke is an “equal opportunity application,” we’ll find
another way to describe the Host that is less prone to cause this particular brand of excitement.
DotNetNuke generates plenty of excitement in business and technology circles and we’re quite
content with that.

09_595636 ch05.qxd 5/10/05 9:57 PM Page 113

To clearly identify the Host requires us to first review a defining characteristic of DotNetNuke. You’ll
recall from Chapter 3 that DotNetNuke is defined as supporting “multiple web sites from the same
codebase.” With one installation of DotNetNuke you can create as many unique portals as you like, each
with its own URL(s), identity, features, users, data, and so on. You learned in Chapter 4 that each portal
has its own administrator, but this begs the question, “Who administers the creation of portals?” So this
is how the scope of the role first comes into focus. The Host is the user who creates portals. But the Host
does a lot more too. So much more that we’ve devoted an entire chapter to the role.

Prior to version 3.0, the Host was alone in his sovereignty, carrying all the responsibility that went along
with being the only user in that role; big title, big job. There was only one Host account and that was it.
Version 3.0 introduces the role of “SuperUser,” so now instead of being forced to play deity a Host can
open ranks to allow for a more “Justice League” approach to configuration and maintenance. All
SuperUsers have “super powers” in the DotNetNuke universe.

So the first thing you’ve learned is that “Host” is already a legacy term in version 3.0, carried forward
from previous generations of DotNetNuke. Understanding this, you can now feel free to interchange the
terms Host and SuperUser anywhere that you see them — in all but one case. The default installation of
DotNetNuke has one SuperUser account preinstalled whose username actually is “host.”

Where Do I Begin?
If you’re going to master a universe, you’ll have to manifest your superpowers and take some cues from
the most famous “in the beginning” of all! Breathe some life into a new user, or, in keeping with the
“Justice League” theme, be a hero and get a “sidekick.”

The very first thing you’ll want to do is to create another SuperUser account. Once that is done, you’ll
retire the default host account. It’s a prudent security measure in any software installation to retire
default administrative accounts to thwart dubious hacking efforts. At a minimum, you’ll want to change
the password for the default host account, although you can also delete it entirely.

In version 3.0, DotNetNuke utilizes a version of Microsoft’s ASP.NET 2.0 MemberRole component in
the default Membership Provider. One of the many distinct features of this component is the implemen-
tation of user lockout. After a specified number of invalid password attempts a user account will be
unable to log in. Although DotNetNuke resets the password lockout after 10 minutes, the nuisance can
be avoided entirely by using a different account and username.

Log in by using your new SuperUser account username and password. You’ll notice that you have the
same view as the Portal Administrator (see Figure 4-2 in Chapter 4) with one small exception: you also
have an additional top-level menu “Host” as shown in Figure 5-1. You’ll be getting into all the details
of all these options in this chapter, but right now just concern yourself with the SuperUsers Accounts
menu item.

114

Chapter 5

09_595636 ch05.qxd 5/10/05 9:57 PM Page 114

Figure 5-1

SuperUsers Accounts
When you navigate to the SuperUsers Accounts page you’ll see a familiar view. The SuperUsers
Accounts page (see Figure 5-2) is literally the same control that is used for managing other users’
accounts and works in the same way, so if you need a refresher on how this works, consult Chapter 4.

Figure 5-2

To some extent the sorting, searching, and paging functions are unnecessary because you’re not likely to
have more than a couple of SuperUsers, but it does keep the interface consistent and familiar.

115

Host Administration

09_595636 ch05.qxd 5/10/05 9:57 PM Page 115

Configuring Your Installation
As you’re about to see, the Host has a lot of options and tools for configuring the environment in which
portals live. As you learned in Chapter 4 in the context of the Portal Administrator, some capability is
specifically appropriate for initial configuration, some for routine operations, and some for ongoing
maintenance, reporting, and issue resolution. As we move through each of the Host Settings, we’ll con-
sider how they apply to those needs.

Host Settings
Host Settings is broken down into two different categories for the sake of organization. The Basic
Settings and Advanced Settings categories each consist of a number of option groups.

As with Site Settings, there is an important text button at the very bottom of the Host Settings page.
Despite the fact that a number of controls on the Host Settings page generate postbacks, no changes are
saved until the Update button gets clicked.

There is also a final control at the bottom of the Host Settings page that falls outside of any option group,
the Upgrade Log For Version selector and Go button. By choosing a particular version and clicking Go,
you can view a log file for that version (if one exists) that contains any errors or warnings recorded dur-
ing the install/upgrade process. The log files are created in the folder of the Data Provider, so in the
default install of DotNetNuke those files are located in

\Providers\DataProviders\SqlDataProvider*.log

Basic Settings: Site Configuration
Table 5-1 describes each of the read-only fields displayed in the Site Configuration group under Basic
Settings. This group is particularly helpful in identifying the context under which your installation of
DotNetNuke is running. If you are communicating with an ISP or hosting company, these details may be
very helpful in diagnosing any issue you might be investigating.

Table 5-1: Basic Settings, Site Configuration

DotNetNuke Version Indicates what version of DotNetNuke is currently running. Until
version 3.0, the only way to verify the running version was to
check a database value or to enable an option to display the ver-
sion in the browser’s title bar (see Show Copyright Credits in
Table 5-3). The format of a DotNetNuke version number is
[Major Version].[Minor Version].[Package Version].
Major and minor versions combine to identify which functional ver-
sion of DotNetNuke you are using (for example, 3.0). The Package
Version indicates a particular package that may be an alpha or beta
testing release, a public release, a security patch release, and so on.

Data Provider Identifies which Data Provider DotNetNuke is currently using.

116

Chapter 5

09_595636 ch05.qxd 5/10/05 9:57 PM Page 116

.NET Framework Indicates which version of the .NET CLR that DotNetNuke is run-
ning under. This can be particularly helpful to ensure proper setup
when your server environment supports multiple versions of the
ASP.NET framework.
For developers this is System.Environment.Version.

ASP.NET Identity Identifies the Windows account name under which DotNetNuke
is running (or the name of the account being impersonated).
For developers this is System.Security.Principal
.WindowsIdentity.GetCurrent.Name.

Host Name Identifies the host name of the system DotNetNuke is running on.
For developers this is Dns.GetHostName.

Basic Settings: Host Details
The host details establish the identity of the installation for both internal processing and external identity
(see Table 5-2). For the most part, the settings of individual portals define their own identity. However,
skin object support is available to pass on host information into portal-level skins. This can be useful for
portals whose support requirements are met by their host so that they can dynamically inject appropriate
title and contact information where needed.

Table 5-2: Basic Settings, Host Details

Host Portal This drop-down selection identifies which portal in the installation
is to be considered the default. The default portal attributes are
used where no other portal context can be determined. For exam-
ple, when an invalid URL is used to reach the installation, the
request is answered on the first alias of the specified Host Portal.

Host Title This value is used to populate the text for the skin token [HOST-
NAME].
Prior to version 3.0, you could see the [HOSTNAME] skin token in
action on the bottom of the default skin. It was often imposed
by the host as a means of injecting a “powered by” link into each
portal’s skin.

Host URL The Host URL is not the same as an alias for the default portal. It
specifies the link target for the Help button in the Control Panel
and the skin token [HOSTNAME].

Host Email Most e-mail in DotNetNuke is sent to or from the individual Portal
Administrators. However, there are a few specific cases where the
Host e-mail address is used (for example, SMTP configuration test,
skin token [HELP], and so on).
To avoid potential problems with outbound e-mail, ensure that the
Host Email is a valid address on the SMTP Server (see Table 5-5).

117

Host Administration

09_595636 ch05.qxd 5/10/05 9:57 PM Page 117

Basic Settings: Appearance
In Chapter 4 you learned about a number of optional settings for default portal appearance. If those
choices are left unmade, these host default choices are applied. Additionally, the host has a couple of
other configuration options that will affect the appearance of portals in this installation. Table 5-3 sum-
marizes the effects of each choice.

Table 5-3: Basic Settings, Appearance

Show Copyright Credits If checked, this setting inserts the DotNetNuke version number
into the browser’s title bar and populates the [DOTNETNUKE]
skin object. In the default skin this is displayed as a small thin
bar across the bottom of the page that displays the DotNetNuke
copyright (see bottom of Figure 5-3).

Use Custom Error Messages This setting specifies whether DotNetNuke will intercept mod-
ule errors or whether ASP.NET will intercept them. If this option
is selected, DotNetNuke will display only basic friendly mes-
sages to non-Admin users. However, if the user encountering
the error is an Admin (or Host) user, full error information is
made available. Figures 5-4 and 5-5 illustrate the difference
between the same error messages presented to Users and
Administrators/SuperUsers, respectively. Detailed information
is also retained in the error log.

Host Skin If a skin is not specified in the portal Site Settings, this skin will
be used as the default for each page where a skin is not explicitly
specified in Page Settings.
The Host Skin, Host Container, Admin Skin, and Admin Con-
tainer settings work exactly like their counterparts in the Portal
Administrators Site Settings. For more detail, please see Chapter 4.

Host Container If a container is not specified in the portal Site Settings, this con-
tainer will be used as the default for each module where a con-
tainer is not explicitly specified in Module Settings.

Admin Skin If a skin is not specified in the portal Site Settings, this skin will
be used as the default for admin pages.

Admin Container If a container is not specified in the portal Site Settings, this con-
tainer will be used as the default for modules on every admin
page.

Upload Skin Uploading a skin from the Host Settings will load it into the
Host’s default folder, which will make it available to all portals.
This is in contrast to uploading from Site Settings, where it will
load into the Portal Root folder. Skins uploaded from here are
located in \Portals_default\Skins.

Upload Container Uploading a container from the Host Settings will load it into the
Host’s default folder, which will make it available to all portals.
This is in contrast to uploading from Site Settings, where it will
load into the Portal Root folder. Containers uploaded from here
are located in \Portals_default\Containers.

118

Chapter 5

09_595636 ch05.qxd 5/10/05 9:57 PM Page 118

The Show Copyrights setting can be helpful in a development environment for quick reference to the
running version (see Figure 5-3). However, in a production environment it can pose a risk of exposure to
anyone trolling specifically to locate DotNetNuke web sites. A simple Google search of the copyright
statement or “DNN” in the title bar will yield results for sites that have not disabled this option.

Figure 5-3

ASP.NET error messages can be helpful and informative for developers, but the familiar “yellow screen
of death” doesn’t do much for the confidence of users and clients. DotNetNuke’s Custom Error
Messages option intercepts errors and encapsulates them within either the offending module’s container
or, in the case of a non-module error, injects them into the top of the ContentPane (see Figure 5-4).

Figure 5-4

Because the error information is confusing for users but valuable for support personnel, DotNetNuke
displays different error information based on the current user (see Figure 5-5). If the current user is an
Administrator or SuperUser, full detailed information is provided. Other users are spared the gory
details and presented with a friendlier message.

Figure 5-5

Basic Settings: Payment Settings
You learned in Chapter 4 that many of these Payment Settings have been preserved from earlier versions
of DotNetNuke for legacy support purposes. For the Host, these settings only come into play as defaults
for new portal creation or for portal subscription renewal. These Payment Settings will ultimately be
deprecated in a future version in favor of more robust eCommerce APIs (see Table 5-4).

119

Host Administration

09_595636 ch05.qxd 5/10/05 9:57 PM Page 119

Table 5-4: Basic Settings, Payment Settings

Hosting Fee Hosting Fee represents a default monthly charge associated with host-
ing a portal. This value is displayed on the Host’s list of portals and is
applied to new portals at the time of their creation. The value can also
be specified within a portal template, which would override this
default value. If subscription renewal is activated, this fee will be used
for the monthly renewal rate.

Hosting Currency Default host currency is used in conjunction with the specified Pay-
ment Processor (for example, as a required parameter for PayPal pro-
cessing). This value is applied to new portals at the time of their
creation but can also be overridden within a portal template.

Hosting Space (MB) This value specifies a default disk space limit for new portals. As with
many other portal values, this value can be overridden in a portal
template. The value is an enforced limit that is displayed at the base of
the File Manager in the Portal Administrators view (see bottom of
Figure 5-32).
As Host, you can change this value in the Site Settings for a specific
portal.

Demo Period (Days) If Anonymous Demo Signup is enabled, the Expiry Date for a new
portal is set this many days into the future.
As Host, you can change this value in the Site Settings for a specific
portal.

Anonymous Demo If disabled, only the Host Administrator is able to create a new portal.
Signup However, if enabled, this feature allows anonymous users to sign up

and immediately log in as Portal Administrator to their own child
portal. You’ll have to create your own link somewhere to reach the
signup page, but you can copy it from your browser’s address bar
after clicking Add New Portal on the Portals page. It should have a
form like the following:
http://soccer.dotnetnuke.com/Default.aspx?ctl=Signup&m
id=321
This page is not illustrated specifically, but it uses the same control as
regular portal signup, which is illustrated in Figure 5-12.
This legacy feature of DotNetNuke was originally provided to show-
case the ability of DotNetNuke to host private portals for potential
clients. Although this feature is still supported in version 3.0, it is not
without its share of legacy issues.
Demo signup is enabled throughout the installation, not just on the
Host Portal. So a clever anonymous user who locates a DotNetNuke
site might try the demo portal signup. The Portal Root ensures file
separation and the host File Upload Extensions protects from unsafe
files, but a malicious user who finds your site could use you as an
anonymous download location for the duration of the demo period
(or until you caught them). Further, since the user chooses the child

120

Chapter 5

09_595636 ch05.qxd 5/10/05 9:57 PM Page 120

portal name, you could wind up with unpleasantly named folder
paths indexed by search engines that you would rather not have.
Since demo signup creates the user as Portal Administrator, a valid
e-mail address is not even required.
Use of this legacy feature is highly discouraged.

The Hosting Space option is included with the Payment Settings because it is recognized as a factor that
commands premium pricing from a web host, and therefore generally also from a VAR (value added
reseller). If a file upload is attempted that causes the hosting space to be exceeded, an error message is
displayed (see Figure 5-6).

Figure 5-6

Enforcing the file upload limit protects you from rampant file uploading by well-meaning clients that
don’t understand the value of limited disk space. It provides the ability to proactively allocate your
available disk space among clients as well as an opportunity to assess charge-back for additional usage.

File upload capabilities through an HTML Provider may be disabled. Unless the control maker has made
it possible to intercept and filter file upload requests, DotNetNuke cannot ensure integrity of the portal
files based on hosting space, allowable file extensions, or directory security. By default, all file uploads
should be performed through the File Manager.

Advanced Settings: Proxy Settings
In general, DotNetNuke should not require specific Proxy Settings. However, some modules may
address additional ports for which Proxy Settings are required in your environment (for example, RSS,
FTP, NNTP, and so on). Standard settings are configurable for the Proxy Server Name, Port, UserID,
Password, and Timeout duration.

Check with your network administrator about appropriate values for these settings in your location.

121

Host Administration

09_595636 ch05.qxd 5/10/05 9:57 PM Page 121

Advanced Settings: SMTP Server Settings
Outbound e-mail requires that a valid SMTP server is specified. Table 5-5 explains the SMTP Server
Settings in more detail.

Table 5-5: Advanced Settings, SMTP Server Settings

SMTP Server This value must resolve to a valid SMTP server. You can specify
the server by computer name (for example, MYSERVER or Local
host), IP address (for example, 127.0.0.1) or URL (for exam-
ple, smtpauth.earthelink.net).

SMTP Authentication Unless your SMTP server is an open relay or filtered by IP, you’ll
need to specify an authentication method. Most SMTP servers
will utilize Basic authentication, however MS Exchange servers
prefer NTLM.

SMTP Username Login name for the account on the SMTP Server (optional).

SMTP Password Password for the account on the SMTP Server (optional).

Once you have configured the SMTP Settings, you can click the Test button to send a message to the
Host Email. If the send operation is successful, you’ll see a message to this effect at the top of the page.
If the operation is unsuccessful, you may receive a CDO error (see Figure 5-7). This error is generally
produced as a result of specifying an SMTP server that cannot be reached.

Figure 5-7

In hosting situations, the web server itself often runs a simple SMTP service for handling outbound
e-mail generated by web sites. Although this setup does initiate outbound e-mail, that mail is often
flagged as SPAM by the target domains (especially domains like Hotmail.com, Yahoo.com, and so on).
For best results, the SMTP server you specify should be the one specified in the MX record for your
domain. Depending on your SMTP server’s configuration, it may be necessary for Portal
Administrators’ e-mail addresses to be recognized on the server as well.

If you are testing from a home network via a broadband connection you should also be aware of your
ISP’s policies regarding SMTP servers. Generally speaking, most ISPs will not allow the trafficking of
e-mail from other SMTP servers on their networks (as a SPAM control measure). You’ll either need to
configure DotNetNuke to use the credentials of your ISP account (just as you would in your local e-mail
client) or configure a local SMTP server to relay through your ISP and specify that local server in
DotNetNuke.

122

Chapter 5

09_595636 ch05.qxd 5/10/05 9:57 PM Page 122

Advanced Settings: Other Settings
This last area covers a lot of ground and includes a number of settings that fall into the category of
“superhero” powers. Each setting is described in Table 5-6, but a number of them will be explained in
greater detail in later sections of this chapter that cover the functional aspects of the features that these
settings control.

Table 5-6: Advanced Settings, Other Settings

Control Panel Select the Control Panel that Portal Administrators will use. Chapter
4 contains a full description of the choices (see Figures 4-3 and 4-4).
The ability to select the Control Panel exists largely to promote the
concept of creating customized Control Panels for the host. If you
created your own Control Panel, what would you make it look like?

Site Log Storage This option allows you to specify whether site log information will
be stored in the database or in files. File-based logs are written
using the IIS 6 log conventions and are stored in the each portal
folder with the following naming convention: /portals/
<portalid>/logs/ex<yymmdd>.log.

Site Log Buffer (Items) This value defines the number of site log entries that are held in
memory before storing them. Setting the buffer to 0 turns logging
off entirely.
Changing the buffer value does not affect the actual I/O cost of log-
ging, but it does change where/when the cost is incurred. For
example, if the log buffer is set to 1, every page request in every
portal will incur the (slight) overhead of the log I/O, whereas if the
log buffer is set to 20, only 1 in 20 requests will incur the overhead,
but it will incur the overhead of all 20 I/O requests.
If cache is cleared (whether by app restart, in host settings, or by
other means) any uncommitted items in the log buffer are lost. Note
that individual buffers are cached for each portal but this setting
applies globally to all of them. Setting this value too high could
result in data loss for low traffic sites whose cache might expire
(and be lost) before reaching the buffer threshold.

Site Log Buffer (Days) DotNetNuke performs site logging on an individual portal level
and retains that information for the number of days specified. This
value represents the default duration that will be applied to each
new portal created. Changing this value has no effect on current
logging configuration.
As Host, you can change this value in the Site Settings for a specific
portal.
Expiration of site log data is contingent upon execution of a sched-
uled job, which periodically truncates the buffer to the duration
specified. The PurgeSiteLog job must be enabled in the Scheduler
for this to occur; otherwise the SiteLog table can grow unchecked.
Job scheduling is covered later in this chapter.

Table continued on following page

123

Host Administration

09_595636 ch05.qxd 5/10/05 9:57 PM Page 123

Disable Users Online “Users Online” is popular functionality in many online portal
applications, tracking and displaying the number of users regis-
tered on the site, how many users are currently using the site, and
so on. However, this functionality would impose unnecessary pro-
cessing overhead on each page request for sites that don’t need it.
By checking this option, logic within DotNetNuke that populates
UsersOnline tracking tables and cache objects is bypassed.
Setting this option is only half the process required to enable/
disable UsersOnline. An essential part of UsersOnline is a corre-
sponding scheduled job that performs periodic cleanup on the asso-
ciated database tables AnonymousUsers and UsersOnline. If this job
is enabled without UsersOnline in use, it is an unnecessary drain on
system resources. Conversely, if it is not enabled when UsersOnline
is in use, these tables will grow unchecked. Job scheduling is cov-
ered later in this chapter.

Users Online Time UsersOnline tracks the presence of users who have been active on
(Minutes) the system within this time period. When the scheduled job runs to

clear the tracking tables, it uses this time period as a basis for deter-
mining which records to clear.
UsersOnline does not track or log personal information and is not a
mechanism for “spying” on users. It makes temporary note of who
is logged in, what page they are currently visiting (no history), and
how many anonymous users are currently viewing the site. The
data is deleted after this duration has passed.

File Upload Extensions This comma-separated list specifies the file extensions that are per-
missible through the File Manager. It comes prefilled with a variety
of common “safe” file extensions and can be fully customized.
The file management utilities within the portal are “intelligent” and
reference this allowable file list. So, for example, a file that is
renamed in the File Manager cannot be renamed with an invalid
file extension. Likewise, files with invalid file extensions are
ignored when unpacking an uploaded zip file.
Note that file upload capability in the default HTML Editor
Provider is disabled. This is because DotNetNuke file upload exten-
sions, directory permissions, and disk space limits cannot be
enforced through that interface.

Skin Upload You can enable Portal Administrators to upload their own skin and
Permissions container files by selecting Portal. To restrict skin and container

uploads, select Host.

Performance Setting A variety of cache objects in DotNetNuke provide for increased per-
formance. These objects do not all have the same duration; they
expire based on their specific functionality (for example, User
objects expire more often than Portal objects). But changing this set-
ting applies a common multiplier that affects their relative duration
(or lifespan). While this duration is enforced within DotNetNuke, it
is still subject to external settings that govern the site (such as recy-
cling of the ASP.NET worker process). Moderate caching is the
default setting.

124

Chapter 5

09_595636 ch05.qxd 5/10/05 9:57 PM Page 124

The No Caching option is primarily a developer/support-oriented
selection. Without the benefit of the caching features of ASP.NET,
the amount of work performed on each page request renders Dot-
NetNuke very slow to run and is not recommended. However, this
option can be very useful if necessary to track down a caching-
related issue.

Clear Cache This button enables the Host to manually clear the cache on
demand. Generally this is not required; however, as Host you also
typically have access to manipulate database tables directly. Table
updates applied in this way bypass the application and so are not
reflected until the cache is updated. You can force update of cache
to reflect your manual changes by clearing it.
Note that clearing the cache in this way also dumps buffered logs
and so should be performed only when necessary.

Scheduler Mode The Timer Method maintains a separate thread to execute sched-
uled tasks while the worker process is alive. Alternatively, the
Request Method triggers periodic execution of tasks as HTTP
Requests are made. You can also disable the Scheduler by selecting
Disabled. The Scheduler is examined in detail later in this chapter.

Scheduler Polling Rate If the Request Method is selected (above), this setting specifies the
interval between scheduled task execution cycles. The Scheduler
task is not invoked on every request, rather just on the first request
within the specified interval.

Enable Event Like the site log, the event log can also be buffered for performance
Log Buffer? to avoid the overhead associated with logging I/O on every

request. If checked, this setting will cause event log entries to be
buffered into cache and periodically written to the data store. If
unchecked, log entries are written immediately.
Unlike site logging, event log buffering is governed by a scheduled
task (PurgeLogBuffer). If this task is not enabled or if the Scheduler
is stopped, this setting will have no effect and logging will occur as
if this setting were unchecked. Event Logging is covered in more
detail later in this chapter.

Use Friendly Urls If checked, DotNetNuke will invoke the FriendlyUrl Provider. By
default, DotNetNuke installs a provider that will produce “machine
friendly” URLs that provide for better indexing by search engines.
For developers, the default provider behavior is controlled by a rule
file (siteurls.config) located in the web root.
The default modules provided with DotNetNuke all work well with
this provider. However, you should understand that not every mod-
ule may work well with any specific implementation of FriendlyUrls.
It is advisable to ensure that any module you employ works with
your FriendlyUrl Provider. For more information on FriendlyUrls,
consult Chapter 8.

125

Host Administration

09_595636 ch05.qxd 5/10/05 9:57 PM Page 125

Managing Portals as Host
A number of settings defined at the portal level are limited to SuperUser access. Some of these were
pointed out in the previous section but there are a few additional ones as well. Since these settings are
applicable on a per-portal basis, you’ll need to be in the context of the portal in question in order to
change them. You can reach the site settings for any portal through the Portals page on the Host menu.
Just click the pencil icon next to one of the portal names (see Figure 5-8).

Portals
Navigate to the Portals page on the Host menu as illustrated in Figure 5-8. From this page you’ll be able
to create and maintain portals as well as generate a portal template for import into another DotNetNuke
installation.

Figure 5-8

At a glance the list enables you to see what portals are configured as well as their portal aliases, number
of registered users, disk space threshold, hosting fee, and expiration date (if set). Clicking the pencil icon
next to any entry takes you to the Site Settings page for that portal (see Chapter 4). While logged on as
the Host you’ll have access to additional configuration items that the Portal Administrator cannot see
(see Figure 5-9).

Figure 5-9

126

Chapter 5

09_595636 ch05.qxd 5/10/05 9:57 PM Page 126

Figure 5-10 shows an additional group of configuration items under Advanced Settings. Table 5-7
explains how each of these options affects the portal.

Table 5-7: Host-Only Site Settings

Expiry Date When the expiry date for a portal is exceeded, a friendly message is
displayed in the place of regular content (see Figure 5-10).

Hosting Fee The default for this value was set in the Host Settings. It is primarily
a display field, but indicates the value appropriate for monthly
renewal.

Disk Space The default for this value was set in the Host Settings. It limits the
amount of disk space available to a Portal Administrator through the
File Manager.

Site Log History The default for this value was set in the Host Settings. It keeps the
site log for this portal truncated to the number of days indicated.

Premium Modules Modules can be installed for use by any portal or can be limited to
use in specific portals by setting them as “premium.” This set of con-
trols identifies which premium modules have been applied to this
portal. You’ll learn more about modules later in this chapter.

Figure 5-10

You’ll also see a new control at the bottom of the Site Settings page for maintaining the list of aliases
(domain names) for the portal (see Figure 5-11).

Figure 5-11

Prior to version 3.0, all portal aliases were maintained in a comma-delimited string, which restricted the
number of aliases that could be assigned. Additionally, it made processing based on individual aliases
more complex and inefficient. In version 3.0 portal aliases are maintained as a list of separate items. To
add an additional portal alias, simply click Add New HTTP Alias and enter it in the text box provided.
A portal can answer to an unlimited number of portal aliases.

127

Host Administration

09_595636 ch05.qxd 5/10/05 9:57 PM Page 127

Adding a New Portal
To create a new portal, simply navigate to the Portals page on the Host menu and click Add New Portal
on the bottom of the page (or select it from the action menu). From there you’ll be taken to the Signup
page as illustrated in Figure 5-12.

Figure 5-12

The default root directory for the portal can be overridden. But aside from this, there should be only one
field on this page that might be unfamiliar to you. You’ll learn about Parent and Child portals in the next
section.

Parent Portals and Child Portals
In Chapter 3, you were introduced to the concept of Parent and Child portals. Portal setup is where you’ll
put these concepts into practice by specifying either a Parent or Child portal. The only real distinction
between a Parent and a Child portal is that a Parent portal alias has a simple URL attributed to it, whereas
a Child portal consists of a URL and subdirectory name. An example of a valid Parent portal name is
www.dotnetnuke.com. Alternatively, you can specify an IP address instead of a domain name (for exam-
ple, 216.26.163.25). An example of a valid Child portal name is www.dotnetnuke.com/soccer, and
an IP address can be substituted here as well (for example, 216.26.163.25/soccer). A Child portal can
be turned into a Parent portal simply by adding a URL to its list of portal aliases.

128

Chapter 5

09_595636 ch05.qxd 5/10/05 9:57 PM Page 128

When a new Child portal is created, a physical directory is also created in the root of the web site with
the Child portal’s name. A page called subhost.aspx is copied into the directory as default.aspx.
This is how DotNetNuke is able to implement addressing of the Child portal by the alias name (for
example, www.dotnetnuke.com/soccer) without making modifications to IIS. Without existence of a
physical path and filename (for example, www.dotnetnuke.com/soccer/default.aspx) IIS would
normally process the request without ever handing it to ASP.NET, rendering an HTTP 404 Error or “page
not found.” You might be tempted to ask why a simple change to IIS would not be a better solution. It
might be, but DotNetNuke is built to provide the functionality in environments where this level of con-
trol may not be available (that is, in a shared hosting environment).

So why would you create a Child portal instead of a Parent anyway? With a single registered domain
name you can create an infinite number of cname portals (for example, soccer.dotnetnuke.com) as
long as your ISP will support a DNS wildcard for your domain. The most popular reason for creating a
Child portal is the ability to emulate a single sign-on solution where credentials “appear” to be shared
between portals. This is a popular implementation in intranets where departmental portals are involved.
Because Child portals exist in the same domain as the Parent portal, they share access to a domain
cookie, which will preserve their “logged in” status across sub-portals as long as their username and
password are synchronized.

Portal Templates
In Chapter 4 you learned about portal templates in the context of importing one through the Site Wizard.
As Host, you have the ability to create your own portal templates, which truly qualifies as a “super
power.” Figure 5-13 illustrates the Export Template function, which is the second component of the
Portals page on the Host menu.

This feature allows you to select an existing portal, supply a name and description, and then generate a tem-
plate that contains all the information necessary to re-create the portal on another installation (see Listing
5-1). Two files are generated in this process (<name>.template and <name>.template.resources).
The .template file is a plain-text file that contains a complete XML representation of the portal, its pages,
modules, settings, and file structure. The .resources file is just a zip file of the portal root that is exported
as content (if this option was selected).

Figure 5-13

129

Host Administration

09_595636 ch05.qxd 5/10/05 9:57 PM Page 129

Portal templates are a new and powerful capability in DotNetNuke 3.0 — but it is also still “raw.” This
means that we’ve yet to provide user interface controls to direct how a template file is exported. At this
point, template files contain everything including the kitchen sink! If you are creating templates, it
would be wise to actually read through the generated file and make sure that there are no options speci-
fied that would be inappropriate for where you intend to apply them. As a standard XML file, this is a
pretty simple thing to do and simply removing nodes that you don’t want should work fine.

Listing 5-1: Portal Template (Settings Node)

<settings>
<logofile>logo.gif</logofile>
<footertext>Copyright 2002-2005 DotNetNuke</footertext>
<expirydate>0001-01-01T00:00:00.0000000+11:00</expirydate>
<userregistration>2</userregistration>
<banneradvertising>1</banneradvertising>
<currency>USD</currency>
<hostfee>0</hostfee>
<hostspace>5</hostspace>
<backgroundfile />
<paymentprocessor>PayPal</paymentprocessor>
<siteloghistory>60</siteloghistory>
<defaultlanguage>en-US</defaultlanguage>
<timezoneoffset>-480</timezoneoffset>

</settings>

For example, a generated template will contain nodes with all the settings for the current portal. As you
can see in Listing 5-1, there are a few nodes here that you might not want to override in a portal that
imports the template; nodes such as <userregistration>, <hostspace>, and <paymentprocessor>.
These settings might be appropriate for a new portal, but templates located in the Host Root
(/Portals/_default) are available to the Site Wizard and can be applied to existing portals as well.

Templates provide a lot of power and promise for automatic configuration and for sharing of portal
information. However, they should be used with care until they’re more “fully cooked.”

Skins
The Portal Administrator and the Host each have their own version of the Skins page. As Host, both are
visible and accessible to you and so it is essential that you understand which one you are working with.

When using the Admin/Skins page, you (as Host) always have access to the Upload Skin and Upload
Container buttons. These are only visible to the Portal Administrator when the Skin Upload Permission
is set to “Portal” (see Table 5-6). This enables you to upload skins and containers that are private to the
specific portal; those files are uploaded to the Portal Root directory (\Portals\<PortalId>). When using
the Host/Skins page the only difference is the target of the uploaded files. Skins and containers
uploaded through the Host/Skins page are installed in the Default Portal directory (\Portals_default)
and so are available to every portal in the installation.

130

Chapter 5

09_595636 ch05.qxd 5/10/05 9:57 PM Page 130

If you want to upload skins for a specific portal only, you’ll want to log in to that specific portal as a
SuperUser to do that. A quick way to navigate to any given portal is to go to the Portals list on the Host
menu and click the portal alias name.

Log Viewer
In Chapter 4 you learned some basic information about the Log Viewer from the Portal Administrator’s
perspective. As the Host, there are two specific differences in your view of the logs as well as a few addi-
tional features. First, your view includes exceptions (and any other events that are hidden from the Portal
Administrator). Second, your view can contain log entries from all portals (if selected as an option). You
also have access to some additional functions including the ability to select and delete specific log entries,
clear the entire log, and edit the log configuration.

To view the full set of logs, take a look at the following files:

\Portals_default\Logs\Application.xml.resources
\Portals_default\Logs\Exception.xml.resources
\Portals_default\Logs\Scheduler.xml.resources
\Portals_default\Logs\Log.xml.resources

For an in-depth review of logging, see Chapter 8.

Edit Log Configurations
From the Log Viewer, select Edit Log Configurations from the bottom of the page or from the action
menu. You’ll find yourself looking at the Edit Log Settings page as illustrated in Figure 5-14.

Figure 5-14

You’ll notice a number of preconfigured logging events; some enabled and some disabled. For example,
because the Scheduler is disabled in the default installation of DotNetNuke, its logging events are also
disabled. You can add a new configuration or edit an existing one, as shown in Figure 5-15.

131

Host Administration

09_595636 ch05.qxd 5/10/05 9:57 PM Page 131

Figure 5-15

Table 5-8 explains each of the log configuration settings.

Table 5-8: Edit Log Settings

Logging Enabled Turns logging on for the item. Items can be defined in the
log settings without being enabled (for example, the default
Scheduler event logging settings).

Log Type Select one of the system-defined event types to log or the
All category (as appropriate). Note that it is acceptable to
define more than one log setting for the same event or for
overlapping events.

Portal Indicate a specific portal for (or All portals) for which this
event is to be logged.

Keep Most Recent Selecting All preserves all entries in the log. Any other value
results in truncation of the log to the maximum number of
items specified for the log type selected above.

FileName If desired, multiple log files can be created. This can be
handy for monitoring performance and/or activity related
to a given portal or event type.

Email Notification Enabled If e-mail notification is enabled when the SendLogNotifica-
tions scheduled job runs, it will assemble and send e-mail
according to the Edit Log Settings.

132

Chapter 5

09_595636 ch05.qxd 5/10/05 9:57 PM Page 132

Occurrence Threshold Specifies how often an event must occur in order to trigger
e-mail notification.

Mail From Address Sent from address specified on outgoing e-mail.

Mail To Address To address specified on outgoing e-mail.

Other Host Tools
In addition to the portal-specific settings you’ve just learned about, SuperUsers have access to many
other powerful tools and configuration options. These are not visible to the Portal Administrator and
affect your entire DotNetNuke installation and, therefore, all portals. The level of sophistication of these
configurable items is quite deep and will challenge you to think about how best to customize your
installation to achieve your unique objectives.

Module Definitions
The Module Definitions page serves as the administration area for all of the modules installed in
DotNetNuke. This page allows you to edit or delete existing module definitions and to add new mod-
ules as well.

DotNetNuke comes preinstalled with a number of basic modules (identified in Chapter 3). Figure 5-16
illustrates the Module Definitions page for a default installation. Each module in the list is shown with a
name, description, and a true/false option indicating whether or not it is marked as “premium.”

What Is a Premium Module?
A module that has been marked “premium” is not freely available to Portal Administrators. Non-premium
modules automatically show up in the selector on the Portal Administrator’s Control Panel, but premium
modules require Host configuration on a per-portal basis (see Figure 5-17). The premium module setting
allows you to hide special-purpose modules installed or developed for one client from those installed or
developed for another. It also enables you to segment your product offerings, providing extra functionality
at a “premium” rate.

Editing Module Definitions
To edit a module definition (for example, if you want to mark an existing module as premium), click the
pencil icon next to the module you want to edit (for example, Announcements).

Each module definition is comprised of three sections: the module description (see Figure 5-16), the
module definitions, and the module controls (see Figure 5-17).

The module description settings hold the basic properties of the module. Name is used in the drop-
down list of modules available to Portal Administrators on the Control Panel. Description is displayed
on pages that describe the modules (for example, Module Definitions page). Version is used by module
developers when issuing updates of their modules. And Premium is used to determine if a module is
available to all portals or only those specifically given access.

133

Host Administration

09_595636 ch05.qxd 5/10/05 9:57 PM Page 133

Figure 5-16

Figure 5-17

134

Chapter 5

09_595636 ch05.qxd 5/10/05 9:57 PM Page 134

A module can have any number of definitions. A definition directly matches to a single component of a
module. For this reason, most modules usually have only one definition; they only add one component
to the page. The Announcements module, for example, has only one component and it is called
“Announcements” as shown in Figure 5-18.

Some modules may add many components to a page, each component providing differing functionality
but part of a logical group. For example, a blogging module might contain a calendar, a list of blog
entries, and a search module. These would be configured as three different definitions, but would still
belong under the same Module Name (for example, myblog).

In this section you can add definitions by typing in their name and clicking Add Definition.
Alternatively, you can select an existing definition from the drop-down list and click Delete Definition.

Figure 5-18

Each definition may have a number of a controls associated with it. These controls directly map to
ASP.NET user controls and each is marked with a name known as a key. This key allows DotNetNuke
to determine which control to load at runtime.

The Announcements module has only two controls, the user control that displays the announcements
(announcements.ascx) and the edit announcement page (editannouncements.ascx). Complex mod-
ules may have a dozen or more configured controls.

This section allows you to add new controls by clicking the Add Control link; edit an existing control by
clicking the pencil icon; or delete a control by editing it first and then clicking Delete on the Edit page.

Installing a New Module
Two methods exist for installing new modules into your DotNetNuke environment. The first method is
an automated install. The second method is by manually adding your definition. Chapter 14 contains a
thorough examination of the packaging and installation of modules and other DotNetNuke add-ons, but
we’ll summarize the module installation processes here for the sake of continuity.

The manual method is popularly used by developers during the process of creating new modules. Hosts
that are not involved in module development will probably never use it.

An automated install involves uploading a zip file containing the contents of a module. These zip files
are generally available from independent developers and companies that create them.

135

Host Administration

09_595636 ch05.qxd 5/10/05 9:57 PM Page 135

DotNetNuke is packaged with two sample modules (Survey & Users Online). They are not installed by
default because they serve as examples for developers. We’ll demonstrate installation of the Survey
module now, just to show you how it’s done.

Click the Upload New Module button at the bottom of the Module Definitions page or on its action menu
(see Figure 5-16). You’ll see the familiar file upload page, only with no options for selecting a target direc-
tory. This is because a module’s install locations are not configurable.

Click the Browse button and locate the DotNetNuke.Survey.zip file. At the time of this writing it is
packaged with the DotNetNuke application in the /DesktopModules/Survey folder, although for the
purposes of this example any module zip file will do. Once the selection has been made, click the Add
button. The filename is added to a list of files that allow you to upload multiple modules at once. Once
you are happy with the list of files to upload, click the Upload New File button (see Figure 5-19).

Figure 5-19

When the module is installed (or uploaded), a detailed log is displayed showing what happened during
the install (see Figure 5-20). If any portion of the installation process fails, error messages will appear in
this log highlighted in red. If your module has a red error message, you should contact the module
provider for technical support.

If there are no red error messages in the log, your module has been successfully installed and is now
available to use within your installation. Figure 5-20 illustrates a portion of what an installation log
would look like for a successful install.

Many modules and other resources are also available at www.dotnetnuke.com.

136

Chapter 5

09_595636 ch05.qxd 5/10/05 9:57 PM Page 136

Figure 5-20

Manually Installing a New Module
As previously mentioned, installing a new module in this manner is usually reserved for developers cre-
ating new modules. But to install a new module manually, click the Add New Module Definition button
at the bottom of the Module Definitions page or on its action menu (shown previously in Figure 5-16).

Once you have arrived at the Add New Module Definition page, you should be able to create your own
module definitions using the same method as editing module definitions (described earlier in this chapter).

File Manager
The File Manager works in exactly the same way for SuperUsers as it does for Portal Administrators
(with a couple of minor exceptions). If you need a refresher on basic operation, consult Chapter 4 (see
Figure 4-32).

You learned previously that the Host has access to provide resources to all portals (for example, templates,
skins, and so on) by making them available through the “Host Root” folder (that is, \Portals_default).
Where the Admin\FileManager provides access to each Portal Root, the Host\File Manager provides
access to the Host Root (see Figure 5-21).

137

Host Administration

09_595636 ch05.qxd 5/10/05 9:57 PM Page 137

Figure 5-21

You’ll also notice that there is no additional control for applying permissions (see Figure 4-33). That’s
because the Host Root permissions are not configurable; only SuperUsers can add, change, modify, or
delete files in the Host Root.

Vendors
Like the File Manager, the Host Vendor page works in exactly the same way for SuperUsers as it does for
Portal Administrators. If you need a refresher on basic operation, consult Chapter 4 (see Figure 4-44).

The only difference between the Host Vendor page and the Portal Administrator Vendor page is the
underlying vendor list. You maintain a vendor list separate from the individual portals, which is visible
by all of them. This is a particularly useful feature for Hosts that maintain multiple portals of their own
(rather than belonging to clients). One list of vendors can be maintained and used to serve advertising
and/or affiliate relationships with multiple portals. In the Banner module, a Portal Administrator can
choose to display banners from either source (Host or Site)

SQL
The Host SQL page is a handy utility for inquiry or remote maintenance (see Figure 5-22). It provides for
the processing of simple queries and returns results in a tabular format. It is also capable of executing
compound queries and update queries by selecting the Run as Script check box.

Figure 5-22 illustrates a couple of handy queries for managing user accounts locked out by the
MemberRole Provider due to invalid password attempts. Although this can be accomplished on a user
basis on each portal’s User page (or by waiting 10 minutes), this method can unlock all users in all por-
tals with one query (if so desired) and is a convenient example.

138

Chapter 5

09_595636 ch05.qxd 5/10/05 9:57 PM Page 138

Figure 5-22

Schedule
In DotNetNuke 2.0 two pieces of functionality were introduced that required recurring operations to be
processed regularly (Users Online and Site Log), emulating “batch processing.” Ultimately, there are many
applications for the services of a batch processor and the Scheduler serves that function in DotNetNuke.
Figure 5-23 illustrates the list of items available on the Schedule page and their default settings at the time
of installation.

You should carefully assess the items in the default schedule list, their settings, and enabled/disabled
status to ensure that they meet your specific operating requirements.

Figure 5-23

The Schedule page provides access to edit the settings of each item, or to add a new item by clicking the
Add Item to Schedule button or selecting the action menu item. It also provides appropriate “at a
glance” information such as the enabled/disabled status, recurring frequency, next scheduled execution
time, and access to a detailed history report.

139

Host Administration

09_595636 ch05.qxd 5/10/05 9:57 PM Page 139

Schedule Item Details
Click the pencil icon next to an item to open the Edit Schedule page (see Figure 5-24). Table 5-9 explains
each of the schedule item settings in detail. Setting changes made on the Edit Schedule page take effect
immediately.

Figure 5-24

Table 5-9: Edit Schedule Settings

Available Tasks This drop-down list includes all classes in any assemblies in
the /bin directory that inherit from DotNetNuke.Scheduling.
SchedulerClient. Assemblies may belong to modules, skin objects,
or other components you have installed that leverage the Sched-
uler’s programming interface.
Installing a component (or module) may actually create a Sched-
uler item for you rather than relying on you to create it yourself.
You’ll want to read the instructions carefully for any modules or
components that you install.

Schedule Enabled Enable or disable the schedule item. If disabled (unchecked), the
Scheduler ignores this item when processing.

Time Lapse Set the desired frequency for running this item (that is, every x
minutes/hours/days).

Retry Frequency If the task fails when it runs according to the specified frequency,
it will be retried according to this setting until the next regularly
scheduled start.

Retain Schedule History Each time an item, its success/fail status, and a number of other
useful information items are logged. This value determines the
number of log records that are retained in this history. Older items
are truncated from the log.

140

Chapter 5

09_595636 ch05.qxd 5/10/05 9:57 PM Page 140

Run on Event You can enable a job to run on an event rather than on a schedule.
The only event currently supported is APPLICATION_START
because events triggered on APPLICATION_END are not guaran-
teed to run in ASP.NET.

Catch Up Enabled If the Scheduler is unable to run when the scheduled start time of
an item passes, the item will not be run. This condition could be
caused by any number of things, including a server reboot or
recycling of the ASP.NET worker process. This setting indicates
whether, at the next scheduled start time, an item should run only
once according to the schedule or play “catch up” and run once
for each scheduled start that was missed.
Under normal circumstances this setting will not be necessary, but
it is available for custom schedule items that require it.

Object Dependencies When the Scheduler Mode is set to the Timer Method (see Host
Settings) it executes as a multithreaded process. This requires
some method of protection against possible deadlock conditions
for simultaneously running threads.
This field provides for the specification of one or more comma-
separated string values, which serve as semaphores to avoid
deadlock. For example, if one schedule item performs a select on
the Users table and another item performs a massive update on
the Users table, you might want to prevent these two items from
running at the same time. So both items should have an object
dependency on the same string value (for example, “LockUsers-
Table”). The dependency will suppress start of any other items
until the currently running item has finished.

Schedule History
If you click the History link next to an item, you’ll see the Schedule History page (Figure 5-25). This page
simply displays a log of results from previous runs of the scheduled item. You’ll recall that the size of
this log (number of items) was set in the Item Settings.

Figure 5-25

141

Host Administration

09_595636 ch05.qxd 5/10/05 9:57 PM Page 141

Schedule Status
The Schedule Status page is reached by selecting View Schedule Status from the action menu on any of
the schedule-related pages (see Figure 5-26).

Figure 5-26

The Schedule Status page gives a detailed view of the current state of the Scheduler and running or
pending items (see Figure 5-27). Refreshing the page will illustrate quickly that DotNetNuke is busily
working in the background to process your scheduled items.

Figure 5-27

There are two display areas on this page; one for Items in Queue and the other for Items Processing.
If you refresh while watching the Time Remaining run down to 0 for a specific item, you may catch it
actually in execution, which is when it will display in the Items Processing area.

Command buttons at the top of this page allow you to stop/start the Scheduler if necessary. This sus-
pends the execution of the jobs though the timers continue to run. Note that these buttons are not
enabled if the Scheduler is running under the Request Method (see Table 5-6).

142

Chapter 5

09_595636 ch05.qxd 5/10/05 9:57 PM Page 142

Configuration
The Scheduler has a couple of useful settings that can be manipulated in the application’s web.config
file. To locate these settings, look for the section that resembles Listing 5-2. The effect of these settings is
summarized in Table 5-10.

Listing 5-2: Schedule Provider Section of web.config

<add name=”DNNScheduler”
type=”DotNetNuke.Services.Scheduling.DNNScheduling.DNNScheduler,

DotNetNuke.DNNScheduler”
providerPath=”~\Providers\SchedulingProviders\DNNScheduler\”
debug=”false”
maxThreads=”-1”/>

Table 5-10: Schedule Provider Configuration Settings

Debug When set to “true,” this will cause a lot of log file entries to be gener-
ated that help in debugging Scheduler-related development (that is,
developing your own Scheduler items). Debugging multithreaded
applications is always a challenge. This is one setting that can help
you figure out why a task is or isn’t getting run.

maxThreads Specifies the maximum number of threads to use for the Scheduler
(when in Timer Method mode). “-1” is the default, which means
“leave it up to the Scheduler to figure out.” If you specify a value
greater than 0, it will use that number as the maximum number of
thread pools to use.

Considerations
One limitation of the Scheduler (mode: Timer Method) is that it cannot run 24/7 without help from an
external program, the ASP.NET worker process. This is a limitation of ASP.NET, and not DotNetNuke.
The worker process used within IIS will periodically recycle according to settings in machine.config.
Some hosts may have settings that recycle the worker process every 30 minutes (forced), while others
may have more complicated settings, such as recycling the worker process after 3000 web site hits, or
after 20 minutes of inactivity. It is this recycling of the worker process that will shut down the Scheduler,
until the worker process is started again (that is, by someone hitting the web site, which in turn starts up
the worker process, starting up the Scheduler as well).

This functionality is actually a major benefit to web applications as a whole, in a hosted environment,
because it keeps runaway applications from taking down the server. But it isn’t without its drawbacks.

The bottom line is that the Scheduler will run 24/7 (mode: Timer Method) as long as someone is visiting
your web site frequently enough to keep the worker process active. It is during periods of dormancy that
the worker process could possibly shut down. It is for this reason that you should carefully plan the
types of tasks you schedule. Make sure that the tasks you schedule are not “time critical,” that is, don’t
have to run “every night at midnight” and so on. A more suitable task is one that runs “once per day”
or “once every few minutes,” that doesn’t mind if it’s not run during periods of inactivity.

143

Host Administration

09_595636 ch05.qxd 5/10/05 9:57 PM Page 143

The Request Method does not have the same dependency upon the ASP.NET worker process. However,
it is entirely dependent upon the timing of visitors to your web site. During periods of inactivity on your
web site, scheduled jobs will not run.

Languages
In Chapter 4 you learned that Portal Administrators have some limited control over the supported
languages and localized strings in their portal. The Host has access to a number of other features and
configuration options. Selecting Languages from the Host menu takes you to the Languages administra-
tion page as shown in Figure 5-28.

Figure 5-28

Background
Software applications are frequently used in many different countries, each with their own unique lan-
guage and culture. This is certainly the case with DotNetNuke, which has users from around the globe.
In an effort to better support users from other countries and cultures, DotNetNuke implements a local-
ization framework to allow the portal to better handle these users’ needs. Not only do other cultures
have different languages, but they also may be in different time zones, have different currencies, and
express times and dates in a different format. Any localization framework has to take all these factors
into account in order to be effective.

In developing the localization framework, the DotNetNuke developers examined many different imple-
mentations and ultimately chose a solution that closely followed the ASP.NET 2.0 framework. Although
the underlying architecture may differ slightly, DotNetNuke uses the same resource file format and file
locations, thereby simplifying the future migration path to ASP.NET 2.0 when it becomes available.

The Languages page is the primary stepping-off point when configuring language support. These settings
will determine the languages available to each portal and the default localized strings. Additionally, the
Host controls the definitions of time zones within the associated portals.

To define localized strings, you must first create a locale. A locale identifies the culture associated with a
group of localized strings. This culture is identified by a friendly name and a key value that corresponds
to specific culture. The .NET Framework documentation defines the culture as:

144

Chapter 5

09_595636 ch05.qxd 5/10/05 9:57 PM Page 144

The culture names follow the RFC 1766 standard in the format “<languagecode2>-<country/
regioncode2>”, where <languagecode2> is a lowercase two-letter code derived from ISO 639-1 and
<country/regioncode2> is an uppercase two-letter code derived from ISO 3166. For example, U.S.
English is “en-US”.

To define a locale, enter the Name and Key and click the Add link. This will create a new entry in the
Locales.xml file and create a localized copy of the TimeZones.xml file as well. Once you have created
a new locale definition, you are ready to create localized resource strings.

Select the Language Editor link from the Languages administration screen in Figure 5-28. This will take
you to the Language Editor. The Language Editor, as shown in Figure 5-29, is the same editor available
to Portal Administrators and was covered in Chapter 4. The only difference is that any localized
resources created by the Host will become the default resource strings for all portals.

If the Portal Administrator edits a resource file, it will override all resources loaded from the default
resource file. Even if the Host subsequently makes changes to the same set of resource strings, these
changes will not be reflected in the portal, which has its own copy of the original resources.

Figure 5-29

The standard portal installation includes more than 115 resource files for each locale. After a new locale
is added by the host, DotNetNuke must create corresponding localized resource files for the new locale.
The portal only creates the new resource file when using the Language Editor (see Figure 5.29) to edit
the localized strings. If the resource for the new locale is not edited, then the default locale (English
en-US) will be used when localizing content.

So, with 100 plus files to edit, you must be asking yourself “How do I ensure I have created localized
versions of each resource file?” That is where the Resource File Verifier (see Figure 5-30) comes in. You
can reach the Verifier from the Language Administration screen.

145

Host Administration

09_595636 ch05.qxd 5/10/05 9:57 PM Page 145

Figure 5-30

Click the Verify Resource Files link to examine the portal for any old or missing resource files. Once the
portal has examined the available resource files, you will get a list of missing resource files, resource files
with missing entries, files with obsolete entries, and files that have entries created prior to any changes
to the default resources (seen previously in Figure 5-4).

The test for determining “Files Older than System Default” is based on file modification dates. Therefore,
if you change multiple resources in the system default file and then change just one resource string in the
localized file, this check will not be able to detect that other resource strings may still need to be updated.

The Resource File Verifier will examine each locale and report the results as shown in Figure 5-31. You
should use this report to identify resources that still need to be localized or that may not be up to date.

Figure 5-31

Using the Verifier makes managing localized resources much easier, but ultimately it is still up to you to
handle localization. If this still seems like too much work, then DotNetNuke provides a shortcut. Instead
of localizing resources yourself, you can load resource packs that were created by someone else. See
Chapter 14 for more information about how to create and load resource packs.

Globalizing an application requires more than just having content appear in a specific language. Another
aspect of globalizing an application requires that the application understand the time zone of the current
user. If the server logs show that a critical event happened at 1:00 AM, what does that really mean? If
you are in Germany and the web server is in Texas, what time did the event happen? To solve this prob-
lem, DotNetNuke stores all time in Universal Time Coordinated (UTC) format. Each user can associate a
TimeZone with their profile. This setting is used to localize the time for the current user.

146

Chapter 5

09_595636 ch05.qxd 5/10/05 9:57 PM Page 146

The TimeZone Editor shown in Figure 5-32 is accessible from the Language Administration screen and
allows the Host to edit the available TimeZone definitions. Like all other resources, the TimeZone defini-
tions are localized. When creating new locales, remember to edit the TimeZones for the new locale as well!

Figure 5-32

Search Admin
The Search Admin page gives you the ability to configure certain aspects of the search engine features.
It’s important to remember that you are configuring the search for the entire installation, not just for any
specific portal. There are just a few options, as shown in Figure 5-33.

Figure 5-33

Setting the Maximum and Minimum Word Lengths can help you keep from indexing unreasonable terms.
The internal default values are currently 50 and 4, respectively. If you deselect Include Common Words,

147

Host Administration

09_595636 ch05.qxd 5/10/05 9:57 PM Page 147

the search engine will not bother indexing words that exist in the SearchCommonWords database table. If
you look at this table you’ll notice that it has the ability to create common word entries for each locale (for
multilanguage customization) although only the English language common words are included by
default. Likewise, you can choose to Include Numbers or to ignore them when content is indexed.

Clicking the Update button saves your preferences. Clicking Re-Index Content causes the search engine
to empty its tables and re-index the full content of all portals in the installation.

Keeping It Current
When you learned about the Scheduler, you may have noticed a scheduled item for the search engine:

DotNetNuke.Services.Search.SearchEngineScheduler

If you want for your portal’s content to be current, it is essential that this job be configured to run peri-
odically. As Portal Administrators add content to their web sites, it is not immediately available through
site search. It will not become available until the new content is indexed the next time this job runs or
until a SuperUser clicks the button to re-index content.

It is also important to understand that the engine that drives search also drives RSS syndication.
Updated content will not be reflected in syndication until the next time the search index is run.

Background
Prior to version 2.0, site search functionality was built using complex (and convoluted) database queries
and was limited to use with the built-in modules provided by DotNetNuke. To make search work with
a third-party module, you had to manually change the database queries or find an alternative search
implementation. And its usage was fairly crude by today’s standards, without any configuration options
or advanced search features.

In version 2.0, the previous implementation became totally obsolete with the introduction of the Data
Abstraction Layer and Data Providers. And so the design of a new search engine began in earnest.
Before this effort progressed much beyond the design stage, the team development target shifted
from version 2.2 to version 3.0, so DotNetNuke version 2 never did get a replacement for its lost search
functionality.

In DotNetNuke 3.0, the search engine is fully integrated into the core application and modules are able
to hook into this powerful functionality easily. This means that any third-party module can participate in
full site search and/or content syndication, simply by implementing the search API as documented in
Chapter 8. Currently, the core provides a search input module that performs full site search and a default
search results page. However, by the time this book is published there should be many enhancements to
this first iteration of advanced Search capability!

Lists
DotNetNuke includes a common utility for the management of lists. This allows you to manage the con-
tent of those lists (where appropriate) and augment them to customize your installation. If you select
Lists from the Host menu you will find yourself of a page that looks like Figure 5-34.

148

Chapter 5

09_595636 ch05.qxd 5/10/05 9:57 PM Page 148

Figure 5-34

The List manager is fairly straightforward, providing an index of the lists it is currently tracking as well
as a summary of the entries and the ability to add new entries or edit existing ones.

Not all lists are ones you should edit without an understanding of the potential impacts. For example, if
you were to remove an entry from the Site Log reports list, it would prevent Portal Administrators from
ever running that report on their portal. You might consider this a good thing if it was necessary to
remove a report that was adversely affecting performance! However, adding a new item to that list
would result in application errors because the Site Log report would not know how to process them.

One of the first customizations you might make to your installation’s Lists would be to add a new
Country sublist, as illustrated in Figure 5-35.

In this example we’re adding region entries for the British Virgin Islands so that when our users register
from there, we can require them to specify their island of residence. DotNetNuke is preconfigured for
Canada and the United States, but you are fully capable of customizing your installation for any regional
list that you require.

Figure 5-35

149

Host Administration

09_595636 ch05.qxd 5/10/05 9:57 PM Page 149

Skins
You should recall from earlier in this chapter that the only difference between working with skins from
the Admin menu and working with skins from the Host menu is the target location of the upload, which
determines availability to other Portal Administrators. For additional information on skins and skinning,
see Chapters 4 and 13, respectively.

Summary
In this chapter you learned just about everything there is to know about administering a collection of
portals, their environment, and runtime features as the Host (or SuperUser) of a DotNetNuke installa-
tion. Key Host functions that you should understand include

❑ Host Settings

❑ Portals

❑ Module Definitions

❑ File Managers

❑ Vendors

❑ SQL

❑ Schedule

❑ Languages

❑ Search Admin

❑ Lists

❑ SuperUsers Accounts

❑ Skins

You should have some understanding of which Portal Administrator–level functions contain Host con-
figurable settings. These Portal Admin functions include

❑ Site Settings

❑ Skins

❑ Log Viewer

You should understand the location and relevance of the Host Root directory (\Portals_default) versus
the Portal Root directory (\Portals\<portalid>), and know that Host default settings are used to create
individual portals, but that changing them has no effect on existing portals.

Your SuperUser powers should now be fully enabled and you should be prepared to assume leadership
of your very own DotNetNuke “Justice League” (cape and super hero sidekick not included).

150

Chapter 5

09_595636 ch05.qxd 5/10/05 9:57 PM Page 150

Modules

Now that you are familiar with the Host and Administration capabilities available within
DotNetNuke, this chapter looks at a concept familiar to most portals — modules.

A module is a pluggable user interface component that processes requests and generates dynamic
content. This definition is similar to that of an ASP.NET page, with the exception that a module can
only appear on an ASP.NET page, and that page can contain any number of module “instances.”

Modules are also defined by another important characteristic known as its type. The module type
governs what functionality it provides. DotNetNuke provides a number of modules out of the
box; these modules range from FAQs and Announcements to Documents. You can even author
your own modules that provide alternate functionality.

By the end of the chapter, you should have a good understanding of the architecture surrounding
modules and how they relate to the DotNetNuke Portal System. This chapter also discusses the
practical aspects regarding modules such as management and installation, and provides an intro-
duction to each of the modules included within DotNetNuke.

Module Architecture
This section explains the concepts of a portal, page, module container, and the module itself.
A walkthrough of how a page is constructed is also presented.

Portal
As discussed in earlier chapters, a portal can be defined as a web-based application that provides
content aggregation from different sources and hosts the presentation layer (modules) of informa-
tion systems.

10_595636 ch06.qxd 5/10/05 10:01 PM Page 151

Figure 6-1 depicts a portal’s basic architecture. To help explain the diagram, DotNetNuke needs to per-
form a number of steps in order to process a page request. The following steps execute during the initial-
ization of the page. This event occurs at initialization so that modules can handle their own life cycle and
process events such as initialization, load, and render.

Figure 6-1

First Step
The first step is to retrieve the modules for the requested page. The retrieval step comprises a number of
important pieces of information such as the modules that appear on the page, the section of the page on
which they will appear (known as content panes), and finally, the security roles associated with each
module.

Second Step
The second step is to make some decisions about the security information retrieved in the previous step.
By examining the current user roles (whether a registered user or anonymous) and the view roles associ-
ated with each module, a list of “authorized” modules is formed for the current page.

Third Step
The third (and final) step is to dynamically inject the “authorized” modules into the corresponding con-
tent panes of the page. Once each of the modules has been loaded, each module is then able to execute
its own series of events and render content.

HTTP

HTML

Portal Engine

Portal Skin

Content Pane

Modules

Content Pane

Modules

Conent Pane

Modules

152

Chapter 6

10_595636 ch06.qxd 5/10/05 10:01 PM Page 152

Page
Figure 6-2 depicts the basic portal page components. The page itself represents a complete markup docu-
ment consisting of a number of “content panes,” and in each content pane a number of modules. In
addition to the modules, a page also consists of navigation areas and site banners. To learn more about
how to customize the look of these other areas, see Chapter 13.

Figure 6-2

Each module consists of a title, decorations, and the content produced by the module. The decorations
can include buttons, links, and a hover menu that can change the module’s state or perform functional-
ity specific to that module.

Module
As mentioned previously, a portal is a web-based application that processes requests and generates
dynamic content. Each module produces its own piece of markup (known as a fragment) and together
with the skin’s markup shows a complete document.

153

Modules

10_595636 ch06.qxd 5/10/05 10:01 PM Page 153

Because each module produces its own markup, they can be viewed as tiny applications within a larger
application. Usually, users interact with the content produced by each module by clicking links or sub-
mitting forms that are then processed by the portal system, and the actions are passed to the correct
module.

Module Container
The decorations surrounding a module is known as the module container. Through this container, a user
is able to interact with the module and perform such actions as minimize/maximize or more advanced
features (if the user has edit privileges on that module).

Figure 6-3 shows the module container of a “links” module when logged in as a user with edit access.
The diagram shows a number of items, such as the hover menu with a list of administration options
(discussed later in this chapter), the title of the module, and the minimize/maximize option.

Figure 6-3

154

Chapter 6

10_595636 ch06.qxd 5/10/05 10:01 PM Page 154

Types of Modules
Now that you are familiar with the concepts surrounding modules, this section examines the 15 user con-
tent modules that are bundled with DotNetNuke. Another four modules exist that are not really content
modules, so we will not discuss the Search or User Account Management modules that you can utilize in
your portal pages. We list each module and include a brief description.

Before starting, however, let’s discuss the core team’s policy surrounding bundled modules. The aim of
the core team has not been to include every new module within the core, but to provide an extensible
and rich platform. By concentrating on the core platform, third parties have an opportunity to build
upon the functionality that is missing within the bundled modules. However, that being said, the bun-
dled modules are designed to meet the majority of needs.

Announcements Module
The Announcements module allows you to create short articles for your visitors and even allows you to
expire the older articles as the content becomes obsolete. This module provides an easy-to-use interface
for keeping your content fresh and rotated. You can use the module as a method of displaying news
releases, a collection of related articles, or merely as a teaser to other content in your portal. You will
now add an Announcements module to your base installation and see exactly how this module works.
Start by opening your web browser to the application and logging in with the administrator account to
add the module to your page. Then you will add some content to your module instance.

We should note here that you do not have to be the administrator in order to accomplish this task. If you
wanted, you could set up a role with edit permission to your page and offload this task to another indi-
vidual in your organization. This is made possible by the roles-based security the application employs to
control access to content and administration.

First, add the module on your page. You use the Add Module function as shown in Figure 6-4 to accom-
plish this task. This process will be the same for every type of module you add. For clarity, we are
including the exact steps you will need to take to add the Announcements module, but as we discuss
the other modules available we will just cover the specifics related to the particular module. Look at
Figure 6-4 to begin this process.

Figure 6-4

When you log in to your portal and navigate to a page where the user has edit privileges, you will see
the control panel shown in Figure 6-4. You may remember from earlier in the chapter that we used this
interface to add a new page to our portal using the page functions. You are now going to use the module
section of this interface to add your Announcements module. This is the interface you will use to add
any module to your portal pages. As in the page function section, the titles of the available functions are
self-documenting. The Module drop-down control lists all the types of modules you have installed in

155

Modules

10_595636 ch06.qxd 5/10/05 10:01 PM Page 155

your DotNetNuke instance and you will be able to select any available module type from the list. One
thing new to version 3 is the ability to add an existing module instance with content to a page. If you
select the Add Existing Module radio button, the content of the Module DDL will change to reflect
instances of other modules you have already added elsewhere in your portal instance. Assume you have
a navigation module you need to show only on certain pages to enable navigation to deeper content
areas of your site, but you do not want to show on all pages of the portal. This function allows you to
easily duplicate your navigation for only the pages for which you need the functionality to be available.
The Module control enables you to specify the pane where you want the module to appear and how you
need the module aligned inside that pane, with the Pane and Align DDL controls, respectively. Notice
that you can also specify the title for the module instance as you add the instance. The preceding direc-
tions do not apply only to the Announcements module; they apply to any module you add to a page.

Now that you understand all the functions available, take a look at Figure 6-5, add the Announcements
module, and set the settings of your module instance.

Figure 6-5

156

Chapter 6

10_595636 ch06.qxd 5/10/05 10:01 PM Page 156

You’ve now added your announcements instance and navigated to the settings for your module. You
will notice the Module Settings control looks familiar to the Page Settings control used earlier in the
chapter. This is by design because it decreases the learning curve associated with managing the applica-
tion. Notice that this control utilizes the same type of field-level help available in the Page Settings con-
trol, which allows you to get a description of the type of content the application expects for this module
instance. Table 6-1 describes these associated settings.

Table 6-1: Announcements: Basic and Advanced Module Settings

Setting Description

Module Title As the name suggests, this is the title for your module.

Permissions This is where you set which roles will have access to edit the content in
your module. As you can see, several options are available for controlling
the security of the module’s content.

Display Module Enabling this check box allows you to define a module that will appear
On All Pages on all pages within your portal. This is very useful when defining adver-

tising or navigation-type modules you need to display to your users
regardless of the page they are visiting.

Header Here you can define content to display above your module’s content.

Footer Here you can define content to display below your module’s content.

Start Date This is the date you want the content to start displaying to your users.
This is very useful for planning content that you only need to appear after
a certain date.

End Date This setting allows you to expire content that is no longer current.

These settings options are pretty much concurrent across all instances of the various modules. Notice the
Page Settings panel below the Modules Settings panel. This is where we set our container for the Links
module earlier in this chapter. Figure 6-6 shows the panel for the Page Settings of our module, and
Table 6-2 explains each of these functions for this area. Note that although this may appear exactly like
the Page Settings covered in Chapter 3, there are some differences and these settings have some unique
settings just for our current module instance. Figure 6-6 illustrates page settings you will see in the base
modules throughout the application.

157

Modules

10_595636 ch06.qxd 5/10/05 10:01 PM Page 157

Figure 6-6

Table 6-2 lists each of these settings. You will encounter this section throughout the modules in the
application.

Table 6-2: Module Page Settings Panel

Setting Description

Icon This is an interesting function that you can use to enhance the dis-
play of your module. Setting an icon for your module replaces the
title with an image. The file you use for this must reside in one of the
areas defined in your file manager area. To set the image you use the
File Location and File Name DDLs to specify the file’s location.

Alignment This setting allows you to specify the alignment of your module in
the pane.

Color This setting allows you to specify the background color of the con-
tent that appears in this module.

Border This setting allows you to specify a border width for your content in
the module.

158

Chapter 6

10_595636 ch06.qxd 5/10/05 10:01 PM Page 158

Visibility DotNetNuke exposes methods to allow your users to expand and
collapse content to save real estate. These options allow you to define
the default visibility behavior of the module and whether you want
the users to be able to hide or display the module’s content.

Display Title This check box enables you to display or hide the module’s title from
the users.

Allow Print This function allows you to expose the print module action, which
displays a print icon your users can select to print the module’s con-
tent in a print-friendly format.

Allow Syndicate This function allows you to expose your module’s content in an XML
format, which allows other web authors to consume and display
your content on another web site.

Module Container Here you can set the container to use for the module’s display in the
portal.

Cache Time DotNetNuke utilizes caching to increase the performance of the
application. Here you can set the number of seconds you would like
for this module to remain cached in memory.

Set As Default Settings This setting allows you to utilize this module’s settings as the default
for all the modules you add to your portal.

Apply To All Modules This is a time-saver if you decide you want the default behavior of all
modules to be different than your original settings. You can apply the
settings to one module and push those settings out to all instances of
modules in the portal.

Move To Page This setting allows you to move this module instance to another page
in the portal.

The settings listed in this section are implemented from the base module settings class, so this informa-
tion is pertinent to all modules that inherit the classes, and it is a programming requirement that mod-
ules inherit the class. This means that you will have the above functionality no matter which module
you are working with, whether it’s a base module or another third-party module you have obtained
from one of the many module developers. Now that you have your module settings updated, you can
go ahead and add a couple of announcements for your users. Figure 6-7 illustrates the view the
Announcements module will now contain as a result of your changes to the settings.

Figure 6-7

159

Modules

10_595636 ch06.qxd 5/10/05 10:01 PM Page 159

Because you set up your module to Allow Print and Allow Syndicate, you will notice the XML and Print
icons showing up in the module instance. If you had not enabled these options, those icons would not be
available. Click the Add New Announcement command link, which will navigate you to the edit control
for your Announcements module. Here, you can define your announcement, as shown in Figure 6-8.

Figure 6-8

Like the other areas of the portal, the names are self-explanatory, but Table 6-3 lists and describes each
option.

Table 6-3: Adding Announcements

Option Description

Title This is the title that describes the individual announcement. By default the
date the announcement is created is appended to the title you define here.
If you do not want this date to appear to your users, uncheck the Add Date
check box.

Description Here you type the content for your announcement. This module utilizes
the Free Text Box (FTB) control to make it easier for users to format the dis-
play of the text. If this particular announcement does not require Rich Text
formatting functionality, you can use the text box option, which will
dynamically remove the instance of FTB and allow you to only use a text
box for this function.

160

Chapter 6

10_595636 ch06.qxd 5/10/05 10:01 PM Page 160

Link This section allows you to specify a location where the user can obtain
more information about the announcement. When you enable this option,
a link is created at the end of your announcement, which when clicked by
the user will allow navigation to the link you define. You have several
options here to define what kind of link you will create. The default is a
link to an external site. If you select Page or File, the Location control will
change to a DDL, which will allow selecting the page or file where your
additional information resides. Auditing information can be defined with
the other controls in this section, so you can capture information on your
users’ actions and behavior for further analysis.

Expires This allows you to set a date when the content should expire and no longer
be viewable by your users.

View Order By default, announcements are displayed in ascending order according to
the date the announcement was created. Setting the view order allows you
to define the order you want announcements to appear.

You now have all the knowledge necessary to create and maintain announcements for your portal. The
other base portal modules follow similar methods for creating content. Because many of these modules
use the same methods for the common functions, we will not cover these methods in detail in the later
module descriptions, but we will emphasize the differences. One thing to keep in mind if you have
aspirations of creating your own modules to extend DotNetNuke is that the code contained in the
Announcements module is a good head start for creating the layout of your own modules. For more
on developing your own modules, refer to Chapters 9 through 12, which cover module development.

Banner Module
The Banner module provides a method of offering advertisements in the DotNetNuke application.
Administering this module is a little different than any of the other base modules because this module
works in conjunction with the Vendors module, which is an administrator-only module. Advertisement
can be controlled from the Host level or Portal level and the host or SuperUser account controls this
behavior.

Probably the first thing you will notice when you add this module to a page is that you only see a
Banner Options action and not Add New Action, like the other modules display. This is because the ban-
ners will need to be added from either the Admin Vendors page or from the Host Vendors page. This is
one of the functions that makes DotNetNuke a viable host platform, because you can offer free or inex-
pensive portals for your users and then recuperate your hosting costs from offering advertising on the
individual portals in your DotNetNuke installation.

Exactly how to add these is covered in the next two chapters, which discuss the Host and Admin func-
tions. For now, assume you have already added a vendor and are ready to display a banner advertise-
ment for that vendor. After you add the module to a page, click the Banner Options action. You are
presented with the Edit Control in Figure 6-9.

161

Modules

10_595636 ch06.qxd 5/10/05 10:01 PM Page 161

Figure 6-9

As you can see, there is no option to add a banner to this control. Those actions are handled in the
respective Vendors module by the Host or Portal Administrator, and this module is the mechanism you
will use to display those settings to the user. For a full description of managing the Vendor functions in
DotNetNuke, refer to Chapters 4 and 5. A description of each of the Edit Banner functions is shown in
Table 6-4.

Table 6-4: Edit Banner Options

Setting Description

Banner Source Selecting one of these radio buttons allows you to specify whether the
vendor banners shown in this module should originate from the host or
from the portal.

Banner Type This dictates the type of banner that should be shown in this module.
Banner types include Banner, MicroButton, Button, Block, Skyscraper,
Text, and Script. It should be noted that selecting a specific type means
the vendor must have that type assigned to its account or the module
will not show that particular vendor’s advertisements.

Banner Group This setting allows you to associate a group of banners together in the
administrator vendor’s module, such as Site Banner group. Entering the
banner group here will allow you to group the same types of banners
together.

Banner Count Here you can define the number of times a banner will display to the
users.

Orientation This defines the orientation of the banner. The type of banner you chose
usually dictates what you choose in this setting.

Border Width This setting allows you to define a border.

Border Color This setting allows you to set the border color.

Row Height This setting allows you to set a row height for your banner.

Row Width This setting allows you to set a row width for your banner.

162

Chapter 6

10_595636 ch06.qxd 5/10/05 10:01 PM Page 162

Once you have set up your vendor accounts on the vendor pages, you will be able to earn revenue from
your DotNetNuke installation. As you saw, there is really no direct editing of content from this module.
This is a design decision, so you can let other roles in your installation handle these remedial types of
tasks while you can control your revenue generation from the higher accounts. You will still need to set
up the module settings for this module, but because this module contains the same functions as the
Announcements module, we will not cover those settings again.

Contacts Module
Almost every web site, regardless of content area, needs a method to provide information to contact the
site’s owners and employees. This is the purpose of the Contacts module. You can add your contact
information and provide an easy-to-use interface for updating it to maintain current information. You
can create an entire company directory from this module or display contact info for only a few individu-
als. The types of information you can display include the name, employee role, e-mail address, and tele-
phone numbers for the individuals listed. Look at the settings control in Figure 6-10 to add a Contacts
module to your test portal.

Figure 6-10

Here you can enter in the information for each contact you want to display and the module will display
the information to the roles you approve. When the module information is entered, the e-mail will be
formatted as a mailto link; your users will be able to use this link to send e-mail to the contact using their
default mail client.

Discussions Module
The Discussions module is a lightweight forum module your users can use to share information. This
module is not designed to be a full-fledged forum platform, but it will work for light forum activities
you may need to offer on your web site. This module uses the same settings as the previous modules
have used so we do not need to cover those activities again. Figure 6-11 shows the interface for creating
new threads in the module.

As you can see, this is the simplest interface we’ve encountered so far. This module is very simple to
use — you just enter a title and write your message. In order for users to reply to your thread they must
click on the thread and click Reply. We suggest you play around with this module because it may meet
your needs to provide this functionality to your users. Several other full-fledged forum modules are
available for DotNetNuke. Some of these are free and some require a small license fee. Refer to the
DotNetNuke web site if you require a more robust forum system for your portal.

163

Modules

10_595636 ch06.qxd 5/10/05 10:01 PM Page 163

Figure 6-11

Documents Module
The Documents module allows you to offer files that your users can download from your site. This is a
fairly useful module because you will likely need to offer examples or additional information in the
form of Word documents or other types of files to your users. The types of files you can use with this
module is controlled by the file type settings under the Host Settings page. By default, DotNetNuke will
allow the following extensions:

❑ .jpg

❑ .jpeg

❑ .jpe

❑ .gif

❑ .bmp

❑ .png

❑ .doc

❑ .xls

❑ .ppt

❑ .pdf

❑ .txt

164

Chapter 6

10_595636 ch06.qxd 5/10/05 10:01 PM Page 164

❑ .xml

❑ .xsl

❑ .css

❑ .zip

If you require additional file types not allowed by default, you will need to add the extension under the
Host Settings page in the File Upload Extensions field. If you are going to allow your users to upload
files, you should be careful as to the type of files allowed because it’s possible users may introduce
viruses or other undesirable files into your portal file system. The application offers no default protec-
tion in this area, so diligence is needed to protect the integrity of the system.

Figure 6-12 shows the interface you use to add new documents to this module. As in other areas of the appli-
cation, the files you make available through this module will reside in your portal default file directory.

Figure 6-12

Here you will enter the title, link, and category for your module. You may notice the Link section appears
almost exactly like the links control in the Announcements module. Here is another example of the object-
oriented programming of DotNetNuke at work. We attempt to reuse code wherever possible to enable a
simpler user interface for the user and to promote best programming practices when possible. You will
notice there are some differences between the links control in the Announcements module and this one in
the Documents module. The only difference between the two is that in the Announcements module you
have an option to select a page in your portal as one of the links. Because it should never be necessary to
offer a page for download, this option is not included in the Documents module. You will also notice that
like the Announcements module, the Documents module allows the tracking of your users’ actions so you
will be able to determine the content that your users are most interested in receiving. The Category field
offers you the ability to logically group the files in this module. This category will be displayed as part of
the Documents module so your users will understand the type of file they are about to download or view.

165

Modules

10_595636 ch06.qxd 5/10/05 10:01 PM Page 165

Events Module
The Events module allows you to list upcoming events to announce to your users. This module has
some additional settings that control the display of the module. The rest of the module settings are the
same as the ones we have already covered, so we will only look at the settings that are unique to this
module. See Figure 6-13.

Figure 6-13

As you can see from Figure 6-13, the Events module can be displayed as either a list or a calendar control
depending on your needs. The other two options are pertinent only if you select the Calendar option.
Selecting the List option will format the information you enter into the module into a sequential list of
the upcoming events you have entered. Once you’ve decided on the view for the events, you can add the
event as shown in Figure 6-14.

You will notice you have many of the same functions available in this module as you do in the other
modules. It should be noted that if you use the calendar view you will want to limit the amount of text
in the description, because there is only limited room in the calendar view for events. If your events
need a longer description to convey the meaning to your users, you will need use the list view for the
Events module. Table 6-5 explores each of the options available in this module.

166

Chapter 6

10_595636 ch06.qxd 5/10/05 10:01 PM Page 166

Figure 6-14

Table 6-5: Edit Events Module

Settings Description

Title Here you can enter the title of your individual event.

Description Here you can enter a description for your event that will provide your user
with detailed information that is not included elsewhere in the module.

Image You can select an image to be associated with your event. This is usually
used to easily convey more information about your event to your users.

Alternate Text This is information describing your image. This is important for meeting
508 accessibility for visually challenged users who may access your site
using screen readers.

Occurs Every Here you can define how often this event will occur. Options are to set the
event to occur periodically based on day, week, month, or year. This is a
time-saver because if you have recurring events to announce, you only
need to set the event once and the module will take care of the rest for you.

Table continued on following page

167

Modules

10_595636 ch06.qxd 5/10/05 10:01 PM Page 167

Start Date This is the first date your event will occur. We should note that unlike the
Announcements module your content will be visible before the date you
enter here. This date signifies the start of your event.

Time This is the time of day your event will occur.

Expiry Date The last day of your event. This is useful when you are using the Occurs
Every function and you no longer need to show the event, but would like
to keep earlier events of this type for reference.

As you can see, the Events module is very useful, and you are sure to find many other uses for it as well.

FAQs Module
You can use the FAQs or Frequently Asked Questions module to answer questions your users may have
about your web site or products. This is a very useful module for disseminating information that you
receive questions about on an ongoing basis. This is one of the simpler modules in DotNetNuke, but it
is also one of the more powerful ones because it will save you many hours of replying to e-mails if you
utilize its functionality. The interface for adding a new FAQ is very simple and warrants little discussion.
Basically, you enter a question you want to provide an answer for and then enter the answer for that ques-
tion. The module offers the ability to utilize the Rich Text editor so that you can format your questions
and answers in a way that is easy for your users to understand and to convey the intended message.
Figure 6-15 shows the interface for the Edit functions of the module.

Figure 6-15

168

Chapter 6

10_595636 ch06.qxd 5/10/05 10:01 PM Page 168

Feedback Module
The Feedback module offers you a mechanism for allowing users to contact you without exposing your
e-mail address to the many SPAM Bots that regularly scan the Internet. The module does not have an
Add function like the other modules we have explored because the purpose of the module does not
need this functionality. Basically users are adding feedback when they send you feedback. The module
does contain some settings you can use to control the display of the module to users and to specify the
e-mail address to which you want the e-mails created from the module to be sent. Prior to version 3 of
the portal, the only option to send these requests to was the administrator account. With this version you
have the option to change this behavior. One thing to be aware of is that this module relies on the mail
server settings on the Host Settings page to function properly. Ensure you have successfully added your
mail server and tested the settings before attempting to utilize this module’s functionality. You will
notice in Figure 6-16 that you also have the option of setting the width and rows of this module, which
controls the display of the module to your users.

Figure 6-16

IFrame Module
The IFrame module allows you to display web pages from other web sites in your portal. When you set
the page, the module should display and add an IFrame tag to your page and load the remote site into
the frame. One of the main uses for this module mentioned in the DotNetNuke forums is to utilize
legacy applications that were created with ASP or some other dynamic language that must still be used
for some functionality. This allows companies to take advantage of the benefits of DotNetNuke while
still utilizing other functionality they had in previous applications. This is usually a short-term fix peo-
ple employ. As they become more familiar with DotNetNuke module development, they can convert
their legacy applications to fully compliant DotNetNuke modules to take advantage of full integration
with DotNetNuke roles and user control functions. The settings available for the IFrame module are
illustrated in Figure 6-17.

169

Modules

10_595636 ch06.qxd 5/10/05 10:01 PM Page 169

Figure 6-17

The Source of the IFrame module is the location of the web page you would like to add to display in your
module. The Width and Height fields determine the size of the IFrame and should be adjusted to fit the
page you need to display. These fields can be entered either as pixels or a percent depending on your
needs. Title is a little confusing here because the title is not the module title, nor will it be shown to normal
users. This title is a requirement for 508 accessibility compliance and you should enter a descriptive value
in this field. Scrolling determines whether the IFrame should add scrollbars for the frame. This is important
if the target web page is larger than you can show in your portal without impeding the display or omitting
certain content of the target page. Your options are auto, yes, and no. Auto is usually the best choice here
because the module will determine whether or not the bars are needed based on the target page dimen-
sions. The last option is to define whether you want a border to appear around your target page.

Image Module
The Image module offers you an easy way to add images to your portal. The module allows you to add
an image to a page where it would not make sense to have a skin element and you do not require the
ability to link to another site from the image. The image you display can reside either in your portal file
system or on an external resource. Figure 6-18 shows the options available for adding a link.

Figure 6-18

170

Chapter 6

10_595636 ch06.qxd 5/10/05 10:01 PM Page 170

You will notice the same familiar file picker interface you have seen in other modules. Selecting the URL
option for the link type will produce a post back and present you with a text box to enter in the path to
the remote image. If you want to use an image that resides in your portal directories, you can select the
image from the drop-down lists. This interface also allows you to enter in the Alternate Text for the
image and specify the Width and Height of the image. Leaving the proportion text boxes blank will
cause the image to be displayed in its actual size.

Links Module
The Links module is probably one of the most used modules in DotNetNuke installations; it probably is
only used less than the HTML/Text and Announcements modules. As its name suggests, this module
allows you to add links your users can use to navigate to other areas of your site or to remote web sites.
This module has a few unique settings you need to be familiar with. Figure 6-19 shows the Module
Settings pane for the Links Settings.

Figure 6-19

As you can see, you have several options for controlling the behavior and view of the Links module.
Selecting the Control Type will allow you to define whether the link list will display as a drop-down list
or a normal data-bound list. You also have the option of displaying the orientation of the list with the
List Display Format option. The last option available is whether you want to show the user a short
description of the web page where the link navigates to. This is a useful option to allow some additional
keywords to be associated with the link. Figure 6-20 shows your options for adding links to your mod-
ules. For this example, just accept the defaults in the Link Settings in Figure 6-19 and move on to adding
your link as shown in Figure 6-20.

171

Modules

10_595636 ch06.qxd 5/10/05 10:01 PM Page 171

Figure 6-20

The title is what users will see as the link. You also use the file picker control in this module and you
have the options of defining an external, page, or internal file in your module. The audit controls on this
module let you track your visitors’ behavior. The Description is the information we mentioned earlier is
where you select the info link in the settings then the user will see an additional link where they can
read the information you enter in this field. The View Order allows you to organize the order in which
your links are displayed in the module.

News Feed (RSS)
The News Feed module allows you to consume RSS content from another resource and display it to your
users. Many web sites offer syndicated feeds that you can consume and display relevant content for
your portal. Many of these resources are available on the Internet, some of which are free and some that
require a fee to consume. The News Feed module allows you to consume both of these types of feeds
and display the information according to your feed style sheet, as shown in Figure 6-21.

The Source is the location of the source you want to consume. You also have the option of specifying the
style sheet to use with the feed. Most news feeds provide a style sheet especially for their feed that you
can use or you can specify your own style sheet. DotNetNuke offers the flexibility to use the style sheet
that meets your business needs. Some feeds require you to present credentials authorizing access to their
content before you can consume a feed. The Username and Password text boxes are where you enter this
type of authentication information.

172

Chapter 6

10_595636 ch06.qxd 5/10/05 10:01 PM Page 172

Figure 6-21

HTML/Text Module
The HTML/Text module, or HTML mod for short, is probably one of the most used modules in
DotNetNuke portals. It allows you to format your content with the easy-to-use Free Text Box editor
and it also allows for a large amount of content to be displayed. This module also fits with what most
webmasters need for their content display. You have the option of using the editor or, if you’re a hard-
core HTML programmer, you can type in your HTML directly with out relying on the controls rendering
your markup. The HTML/Text interface is very straightforward and includes only two controls, as
shown in Figure 6-22.

The first option is where you will enter your content to be displayed in the module and the second is a
search summary. The DotNetNuke 3 search functions have the ability to index all the content in this
module. The type of content entered in this module may become quite large, so the core team felt it
would be pertinent to allow a mechanism for the module administrator to add a summary of the content
for the search engine to utilize. This accomplishes two functions. First, it allows you to provide the gist
of the content that will be displayed to users when they search for similar content and, second, it helps
with the performance of the search engine because there is no need to index all of the content that may
appear in this type of module.

173

Modules

10_595636 ch06.qxd 5/10/05 10:01 PM Page 173

Figure 6-22

User Defined Table Module
The User Defined Table is a catch-all type of module. This module allows you to define your own data
type and display this information to your users in an organized manner. The easiest way to understand
the use of this module is through an example. Suppose you need an additional field for your portal’s
contacts. You could open up the Contacts project and modify the code to add your field and then recom-
pile, but you could also use the User Defined module to accomplish the same task. First, add the module
to your page and open the Manage User Defined Table action item. Click the Add New Column link.
You are presented with the screen shown Figure 6-23.

Figure 6-23

174

Chapter 6

10_595636 ch06.qxd 5/10/05 10:01 PM Page 174

As you can see, you have the ability to add your own defined fields in the module. For simplicity,
assume you only need to display the person’s name, title, and birthday in your Contacts module. So,
you add three fields of these types and now have your fields defined as in Figure 6-24.

Figure 6-24

You not only have the ability to add your own unique fields, but you also have the ability to specify the
data type. Your data type options for this module include text, integer, decimal, date, and Boolean. These
types give you the ability to create some pretty interesting scenarios out of this module. Figure 6-25
shows the finished user defined table. To add a new item to the module you can now select the Add
New Row action from the module menu.

Figure 6-25

As you can see, you can display information in a manner that was previously not available with the por-
tal, and you have accomplished your goals with just a few clicks and without ever opening up an IDE to
display your data. We suggest you spend some time exploring the functionality of this module and see
what other functions it may allow you to perform.

XML/XSL Module
The XML/XSL module allows you to display XML data from an external data source and display it in
your portal according to the accompanying XSL transformation file. This module further increases the
type of data you can display in your portal and is only limited by the XML technology and your imagi-
nation. Figure 6-26 shows the Edit settings of this module.

175

Modules

10_595636 ch06.qxd 5/10/05 10:01 PM Page 175

Figure 6-26

You can see from the figure that this module utilizes the file picker controls available in other modules to
allow you to select the source of your XML data and the transformation file you will use to describe that
data. This module enables DotNetNuke to consume data from a wide variety of sources, because most
modern data sources enable a method for exporting its data to XML format.

Management
Now that we have discussed the architecture and explored the modules bundled within DotNetNuke,
it’s time to examine the management functionality surrounding modules. This section discusses the
module options that appear in the top toolbar, such as adding a module to a page, and also discusses
the options surrounding a module, such as minimize/maximize, site settings, delete, and so on.

Page Management
Figure 6-27 shows the module section of the administration toolbar that appears for portal administra-
tors or users with sufficient edit permissions.

This toolbar has two modes of operation, depending on the radio option you select. The default mode of
operation is Add New Module, as shown in Figure 6-27. This mode allows you to add new modules to
the current page. To add a new module, select the desired module from the drop-down list, specify the
pane to inject the module into, specify a title for the desired module, and choose the alignment for the
text within the module. Click the Add button to inject the module into the current page.

176

Chapter 6

10_595636 ch06.qxd 5/10/05 10:01 PM Page 176

Figure 6-27

The other mode of operation is Add Existing Module, as shown in Figure 6-28. This mode allows you to
add the exact same instance of a module that appears on another page. This means that any updates
done to the module will automatically appear in both locations no matter which page the update was
performed on. To add an existing module, select the desired page from the drop-down list, specify the
pane to inject the module into, select the module (populated from the page selected) you want to add to
the current page, and choose the alignment for the text within the module. Click the Add button to inject
the module into the current page.

Now that you have added a module to a page, you may notice a red border around the module with the
keyword “Administrators.” The red border dictates that this module is not publicly viewable. The process
has been designed so that only the administrators of the current page can see newly added modules. To
make it publicly viewable, see “Settings” under “Hover Menu” in the following section.

177

Modules

10_595636 ch06.qxd 5/10/05 10:01 PM Page 177

Figure 6-28

Module Management
Now that you are able to add modules to pages, this section discusses the options available to you once
a module is on the page. Earlier in this chapter we discussed the concept of a module container:

“Each module consists of a title, decorations, and the content produced by the module. The decorations
can include buttons, links, and a hover menu that can change the module’s state, or perform functional-
ity specific to that module.”

This section explains the various decorations (buttons, links, and hover menu) that are available in each
module (providing the user is an authorized role). The following features are described:

❑ Drag and Drop: Allows you to reorganize modules on a single page.

❑ Hover Menu: Provides a variety of options.

❑ Minimize/Maximize: Allows a user to control the visibility of module’s content.

Drag and Drop
Drag and Drop is a relatively new feature in DotNetNuke. It allows an authorized user to select a mod-
ule for relocation, drag the module to the new location (content pane), and unclick to drop the module
into its new location.

178

Chapter 6

10_595636 ch06.qxd 5/10/05 10:01 PM Page 178

To relocate a module, select the title of a module with your left mouse button, hold down the button,
and drag the module to the new location, as shown in Figure 6-29. The pane you are dragging the mod-
ule to should highlight, indicating that it is okay to drop it (unclick the mouse button).

Figure 6-29

Using Drag and Drop provides a time-efficient method of reorganizing content once it is on a page.

Hover Menu
The hover menu contains a variety of options and is ordered in a similar fashion for all modules. The
first one or two options available in the menu are module-specific.

Figure 6-30 shows the Announcements module and its hover menu. As you can see, the first option is
Add New Announcement, which is specific to the Announcements module. In this section, we won’t be
discussing options that are specific to a module, but rather the general options available to all modules.

179

Modules

10_595636 ch06.qxd 5/10/05 10:01 PM Page 179

Figure 6-30

Import Content
The Import Content option allows you to import a module’s content from another portal. Be aware that
not all third-party modules support this option.

Export Content
The Export Content option allows you export a module’s content to a single file. Be aware that not all
third-party modules support this option.

Syndicate
The Syndicate option links to a Rich Site Summary (RSS) feed for that module.

Help
The Help option links to the configured help for that module. Module authors have a number of mecha-
nisms for providing help, and this option will link to the mechanism they have selected.

Print
The Print option takes you to a screen containing only that module for printing purposes.

180

Chapter 6

10_595636 ch06.qxd 5/10/05 10:01 PM Page 180

Settings
The Settings section is the most important menu option in the hover menu, as discussed earlier in this chap-
ter. It takes you to an edit screen for that module where you can edit various options about the selected mod-
ule. The Basic Settings options include the title and permissions for the module, as shown in Figure 6-31.

The Advanced Settings options (also shown in Figure 6-31) include the option to provide a header or
footer for the module, a start and end date for display purposes, and finally, the option to show the mod-
ule on all pages.

Figure 6-31

The Page Settings options (as shown in Figure 6-32) include options for controlling the look of the mod-
ule, such as icon, color, border, alignment, and visibility. Other options include Display Title, Allow
Print, Allow Syndication, Override Container, and a Cache Time option that allows output caching of the
module’s content, which is particularly useful on high-traffic sites. The last section of this area allows
the authorized user to apply these settings to all modules, or move the module to another page.

181

Modules

10_595636 ch06.qxd 5/10/05 10:01 PM Page 181

Figure 6-32

Delete
The Delete option prompts the user for a confirmation on whether or not to the delete the selected module.
Answering yes will remove the module from the page and place it in the recycle bin located in the adminis-
tration section of the portal.

Move
The Move option provides optional menus underneath this option. The number of options depends on
the portal skin, but it allows you to specify a valid pane to move this module to. This is an alternative
method of moving a module to the drag-and-drop method discussed earlier.

Minimize/Maximize
The Minimize/Maximize feature allows a user to control the visibility of a module’s content. This fea-
ture is personalized on a user-to-user basis, although you can set a default state in the module settings
section of a module. Figure 6-33 shows a minimized module.

182

Chapter 6

10_595636 ch06.qxd 5/10/05 10:01 PM Page 182

Figure 6-33

Installation
Now that you are familiar with the concept of modules and using the default modules within your por-
tal, you can add new modules to your DotNetNuke installation. As discussed earlier, DotNetNuke is an
extensible platform; that is, it allows you to install third-party modules into your portal environment.

This section walks you through the steps of uploading a new module; in particular, it uses the Survey
module that comes bundled with DotNetNuke but is not installed by default.

An earlier chapter introduced the Module Definitions page. It is the Module Definitions page that allows
you to install new DotNetNuke modules. To find this page, make sure you are logged in as a SuperUser
and navigate to Host ➪ Module Definitions. Figure 6-34 shows the Module Definitions page.

183

Modules

10_595636 ch06.qxd 5/10/05 10:01 PM Page 183

Figure 6-34

To add a new module from the Module Definitions page, move your mouse over the hover menu
and select Upload New Module. Once on this screen, you are presented with the screen the shown in
Figure 6-35.

To upload the module, click the Browse button and choose your module install file, which should be a
zip file. The Survey module zip file is located at the following path:

<DotNetNuke Installation Directory>/DesktopModules/Survey/DotNetNuke.Survey.Zip

Once the file has been selected, click Add and then Upload New File.

The resulting screen presents a series of log entries showing you what happened during the installation
of the module. Once you are happy with the installation (for example, there are no glaring red error mes-
sages), click the Return hyperlink or navigate to any page within your portal system. This page hit may
take some time since the cache has been flushed by installing a new module.

To confirm that the module has been installed successfully, you should now see it in the drop-down list
in the top toolbar. In this particular case, you should see an entry named “CompanyName – Survey” in
the module drop-down list.

184

Chapter 6

10_595636 ch06.qxd 5/10/05 10:01 PM Page 184

Figure 6-35

Summary
This chapter introduced the concept of modules, and discussed their architecture in a portal context. You
should now be familiar with the terms portal, page, module, and module container.

The chapter also discussed the types of modules included with DotNetNuke and the management of
those modules from a site administrator’s perspective. It also examined management from a page per-
spective and examined the various controls, such as the hover menu, that are included within a module.

Lastly, it discussed the installation of third-party modules and walked through the installation of the
Survey module that is bundled within DotNetNuke.

185

Modules

10_595636 ch06.qxd 5/10/05 10:01 PM Page 185

10_595636 ch06.qxd 5/10/05 10:01 PM Page 186

DotNetNuke Architecture

The architecture of DotNetNuke has evolved from a rewrite of the IBuySpy Portal into a best prac-
tice example of design patterns and coding standards. This chapter explains the components of the
architecture behind DotNetNuke.

Before diving deep into the architectural overview, you should understand some key technologies
that DotNetNuke employs. The following section covers several interesting technologies and
design patterns used in the DotNetNuke 3.0 architecture.

Technologies Used
As covered in Chapter 1, DotNetNuke was originally derived from the IBuySpy Portal Solution
Kit. IBuySpy was written in VB.NET and showcased some interesting design concepts. If you look
under the hood of DotNetNuke 3.0 today, though, it doesn’t even resemble IBuySpy. We have
taken the best concepts from IBuySpy and applied many best practice design patterns and coding
standards that have evolved as the .NET Framework has evolved.

DotNetNuke 3.0 uses several key technologies in its architecture:

❑ Windows 2000 Server, Windows 2003 Server

❑ ASP.NET

❑ Visual Basic .NET

❑ Web Forms

❑ Microsoft Internet Information Services

❑ ADO.NET

❑ Microsoft SQL Server 2000

11_595636 ch07.qxd 5/10/05 10:03 PM Page 187

In addition, DotNetNuke showcases several key design patterns and concepts that differentiate it
from many other portal applications. These design patterns and concepts provide a foundation that
demonstrates and encourages best practices programming:

❑ Provider Model

❑ Custom Business Objects and Controllers

❑ Centralized Custom Business Object Hydration

❑ Membership/Roles/Profile Providers using ASP.NET 2.0 API

❑ Localization framework that mirrors the ASP.NET 2.0 implementation

The DotNetNuke application has attracted a lot of attention in its use of these key design patterns. An
important driver to that attention has been the ability for developers to learn many of the ASP.NET 2.0
features before ASP.NET 2.0 is released. Developers have also learned from DotNetNuke about the
extensibility of the Provider Model and how it can help them construct better applications.

Provider Model
The Provider Model is a design pattern that is used in the DotNetNuke architecture to allow core func-
tionality to be replaced without modifying core code. The introduction of the Provider Model started
with Microsoft in its need to provide a simple and extensible API in .NET. The Provider Model has been
formalized in ASP.NET 2.0 as a best practice design pattern. The purpose of the Provider Model is to
provide an easy-to-understand and well-documented API that has the benefits of simplicity and the
power of extensibility.

To provide both simplicity and extensibility, the API is separated from the implementation of the API.
A provider is a contract between an API and the business logic that establishes the functionality that the
implementation of the API must provide. When a method in the API is called, it is the implementation of
the API that fulfills the request. Simply, the API doesn’t care “how” the job is done, as long as it is done.
If there is one useful concept garnered from this section, let it be this oversimplification of the purpose of
the Provider Model:

“Build things so they do not depend on the details of other things.”

This fundamental design concept was recognized well before the Provider Model came to fruition, but it
truly speaks to what the Provider Model brings to developers. The API in the Provider Model does not
depend on the details of the implementation of the API. It is because of this that the implementation of
the API can be changed very easily, and the API itself is unaffected due to the abstraction.

Several areas in DotNetNuke use the Provider Model:

❑ Data Provider

❑ Scheduling Provider

❑ Logging Provider

188

Chapter 7

11_595636 ch07.qxd 5/10/05 10:03 PM Page 188

❑ HTML Editor Provider

❑ Search Provider

❑ Friendly URL Provider

The first implementation of the Provider Model in DotNetNuke was the Data Provider. DotNetNuke
originally supported only Microsoft SQL Server. The core of the portal was tightly coupled with the data
tier. Many requests came from the community to extend DotNetNuke to support other data stores, so we
needed a way to support a diverse array of data stores while maintaining a simple data access layer and
allowing for extensibility. This is when the concept of the Provider Model was first introduced into
DotNetNuke.

Figure 7-1 shows that the Data Provider API is not dependent on a tightly coupled implementation of
the API. Instead, the Data Provider API doesn’t even know what kind of data store is being used until
you configure an XML setting in the web.config file. Other than the settings in web.config, the only other
requirement of the Data Provider API is that the implementation of the API must fulfill its contract by
providing the necessary functionality defined in the base class. For example, all methods marked with
MustOverride in the Data Provider API must be overridden in the implementation of the API.

Figure 7-1

CBO Controller
Class

Data Provider
Abstract Base

Class

Data Provider
API

OR

Implementation of
Data Provider API

Microsoft
SQL Server

Data Provider

OR

OR

mySQL
Data Provider

Oracle
Data Provider

SQL Server

Other
Data Provider

Other

mySQL

Oracle

189

DotNetNuke Architecture

11_595636 ch07.qxd 5/10/05 10:03 PM Page 189

Provider Configuration
The Provider API has to be configured to work with the implementation of the API. The API needs to be
configured to know which type and assembly to use for the implementation of the API. As mentioned in
the previous section, this is configured in the web.config file.

The configuration settings are in XML in the web.config file. There is no standard for naming conventions
or the structure of the configuration settings in the Provider Model in general. However, DotNetNuke has
followed a consistent pattern in each Provider Model API and the associated configuration settings.

Each API may have different requirements for configuration settings. For instance, the Data Provider
API needs a connection string defined in its configuration settings. The XML Logging Provider needs its
log configuration file location defined in its configuration settings. So each API will have configuration
settings that are specific to that API.

The DotNetNuke core providers store the Provider Model API configuration settings in web.config under
the /configuration/dotnetnuke node. When a Provider Model API is first instantiated, it collects these set-
tings, which allows it to use the specified implementation of the API. The configuration settings are then
cached so that in subsequent requests the configuration settings are retrieved more quickly. Listing 7-1
shows a section of the web.config file that contains the Data Provider API’s configuration settings.

Listing 7-1: Data Provider Configuration Settings

<data defaultProvider=”SqlDataProvider”>
<providers>

<clear />
<add name=”SqlDataProvider”
type=”DotNetNuke.Data.SqlDataProvider, DotNetNuke.SqlDataProvider”
connectionStringName=”SiteSqlServer”
upgradeConnectionString=””
providerPath=”~\Providers\DataProviders\SqlDataProvider\”
objectQualifier=””
databaseOwner=”dbo” />

</providers>
</data>

The Provider Model has brought great value to DotNetNuke in the way that it allows for functionality to
be replaced without modifying the core code. In DotNetNuke, like most open-source applications, the
core code should not be modified by its consumers if at all possible. The Provider Model helps to enforce
this fundamental standard of open-source application development. It also provides a new level of
abstraction between the data access layer and the data store.

Custom Business Objects
Custom Business Objects (CBOs) are essentially a blueprint, or representation, of an object that
is important to the application. In DotNetNuke, an example of a CBO is an instance of the
DotNetNuke.Services.FileSystem.FileInfo class found in /components/FileSystem/FileInfo.vb.
An instance of this class contains information about a single file, as shown in Listing 7-2.

190

Chapter 7

11_595636 ch07.qxd 5/10/05 10:03 PM Page 190

Listing 7-2: The FileInfo CBO Class

<XmlRoot(“file”, IsNullable:=False)> Public Class FileInfo
Private _FileId As Integer
Private _PortalId As Integer
Private _FileName As String
Private _Extension As String
Private _Size As Integer
Private _Width As Integer
Private _Height As Integer
Private _ContentType As String
Private _Folder As String

<XmlIgnore()> Public Property FileId() As Integer
Get

Return _FileId
End Get
Set(ByVal Value As Integer)

_FileId = Value
End Set

End Property
<XmlIgnore()> Public Property PortalId() As Integer

Get
Return _PortalId

End Get
Set(ByVal Value As Integer)

_PortalId = Value
End Set

End Property
<XmlElement(“filename”)> Public Property FileName() As String

Get
Return _FileName

End Get
Set(ByVal Value As String)

_FileName = Value
End Set

End Property
<XmlElement(“extension”)> Public Property Extension() As String

Get
Return _Extension

End Get
Set(ByVal Value As String)

_Extension = Value
End Set

End Property
<XmlElement(“size”)> Public Property Size() As Integer

Get
Return _Size

End Get
Set(ByVal Value As Integer)

_Size = Value
End Set

End Property
<XmlElement(“width”)> Public Property Width() As Integer

191

DotNetNuke Architecture

11_595636 ch07.qxd 5/10/05 10:03 PM Page 191

Get
Return _Width

End Get
Set(ByVal Value As Integer)

_Width = Value
End Set

End Property
<XmlElement(“height”)> Public Property Height() As Integer

Get
Return _Height

End Get
Set(ByVal Value As Integer)

_Height = Value
End Set

End Property
<XmlElement(“contenttype”)> Public Property ContentType() As String

Get
Return _ContentType

End Get
Set(ByVal Value As String)

_ContentType = Value
End Set

End Property
<XmlElement(“folder”)> Public Property Folder() As String

Get
Return _Folder

End Get
Set(ByVal Value As String)

_Folder = Value
End Set

End Property
End Class

The FileInfo class has no methods, only properties. This is an important distinction to recognize —
CBOs only have properties. The methods to manage the CBO are in a CBO Controller class specific to
the CBO. A CBO Controller class contains the business logic necessary to work with its associated CBO
class. For instance, there is a FileController class found in /components/FileSystem/FileController.vb
that contains business logic for the FileInfo CBO. For the sake of the core File Manager module, the
FileInfo data is stored in the database. Therefore, the FileController class contains the logic necessary to
hydrate the FileInfo object (or a collection of FileInfo objects) with data retrieved from the database.

CBO Hydrator
One very powerful core service is the CBO Hydrator, which can be found in the CBO class in
/components/Shared/CBO.vb. The CBO Hydrator is a collection of methods that provide a centralized
means of hydrating a CBO or a collection of CBOs.

Figure 7-2 shows how a CBO Controller class makes a call to the CBO Hydrator by sending in an open
DataReader and the type of object to fill. Depending on the method called within the CBO Hydrator, it
will return either a single hydrated object or a collection of hydrated objects. When the CBO Hydrator

192

Chapter 7

11_595636 ch07.qxd 5/10/05 10:03 PM Page 192

fills an object’s properties, it discovers the properties of the CBO using reflection. Then it caches the
properties that it has discovered so the next time an object of the same type is hydrated, the properties
will not need to be discovered. Instead, they will be pulled from the cache.

Figure 7-2

To hydrate a collection of CBOs, use the DotNetNuke.Common.Utilities.CBO.FillCollection
method. The method accepts an IDataReader and a type as input parameters. It returns an ArrayList of
objects of the type specified in the objType parameter. For example, the code-behind for the Portals
module ($AppRoot/admin/Portal/Portals.ascx.vb) needs a collection of PortalInfo objects so it can
display a list of Portals in the portal module’s rendered output. The code-behind calls DotNetNuke
.Entities.Portals.PortalController.GetPortals() to get an ArrayList of PortalInfo objects.
That ArrayList is filled by the DotNetNuke.Common.Utilities.CBO.FillCollection method, which
converts an iDataReader object (from a database query) into a collection of hydrated PortalInfo
objects. The DotNetNuke.Common.Utilities.CBO.FillCollection method signature is as follows:

Public Shared Function FillCollection(ByVal dr As IDataReader, ByVal objType As _
Type) As ArrayList

To hydrate a single CBO rather than a collection, use the CBO.FillObject method. This method accepts
the same input parameters, but returns a single object. For example, in the code-behind for the Site
Settings module ($AppRoot/Admin/Portal/SiteSettings.ascx.vb) needs a PortalInfo object to display
the portal settings in the module’s rendered output. The code-behind gets the PortalInfo object from a
call to DotNetNuke.Entities.Portals.PortalController.GetPortal. The GetPortal method
uses the DotNetNuke.Common.Utilities.CBO.FillObject method to convert an iDataReader
object (from a database query) into a hydrated PortalInfo object. The method signature for
DotNetNuke.Common.Utilities.CBO.FillObject is as follows:

Public Shared Function FillObject(ByVal dr As IDataReader, ByVal _
objType As Type) As Object

The FileController shown in Listing 7-3 is an example of a CBO Controller that utilizes the CBO Hydrator.

CBO Controller
Class

iDataReader +

CBO
Hydrator

1. Open Data Reader and Type to Hydrate

2. Hydrated Object or Collection

GetType(FileInfo)

FileInfo

FileInfo

FileInfo

193

DotNetNuke Architecture

11_595636 ch07.qxd 5/10/05 10:03 PM Page 193

Listing 7-3: The FileController CBO Controller Class

Public Class FolderController
Public Function GetFoldersByPortal(ByVal PortalID As Integer) As ArrayList

Return _
CBO.FillCollection(DataProvider.Instance().GetFoldersByPortal(PortalID), _
GetType(Services.FileSystem.FolderInfo))

End Function
Public Function GetFolder(ByVal PortalID As Integer, ByVal FolderPath As _
String) As FolderInfo

Return CType(CBO.FillObject(DataProvider.Instance().GetFolder(PortalID, _
FolderPath), GetType(Services.FileSystem.FolderInfo)), FolderInfo)

End Function
Public Function GetFolder(ByVal PortalID As Integer, ByVal FolderID As Integer)
As ArrayList

Return CBO.FillCollection(DataProvider.Instance().GetFolder(PortalID, _
FolderID), GetType(Services.FileSystem.FolderInfo))

End Function
Public Function AddFolder(ByVal objFolderInfo As FolderInfo) As Integer

Return DataProvider.Instance().AddFolder(objFolderInfo.PortalID, _
objFolderInfo.FolderPath)

End Function
Public Sub UpdateFolder(ByVal objFolderInfo As FolderInfo)

DataProvider.Instance().UpdateFolder(objFolderInfo.PortalID, _
objFolderInfo.FolderID, objFolderInfo.FolderPath)

End Sub
Public Sub DeleteFolder(ByVal PortalID As Integer, ByVal FolderPath As String)

DataProvider.Instance().DeleteFolder(PortalID, FolderPath)
End Sub

End Class

Using the CBO Hydrator significantly reduces the amount of code needed to fill an object or collection of
objects. Without using the CBO Hydrator, you would have to code at least one line per CBO property in
order to fill that object with the contents of a DataReader as shown in Listing 7-4. This is an example of
filling a single FileInfo object without using the CBO Hydrator.

Listing 7-4: Traditional Method of Filling an Object

Dim dr As IDataReader
Try

dr = DataProvider.Instance().GetFolder(PortalID, FolderPath)
Dim f As New FileInfo
f.ContentType = Convert.ToString(dr(“ContentType”))
f.Extension = Convert.ToString(dr(“Extension”))
f.FileId = Convert.ToInt32(dr(“FileId”))
f.FileName = Convert.ToString(dr(“FileName”))
f.Folder = Convert.ToString(dr(“Folder”))
f.Height = Convert.ToInt32(dr(“Height”))
f.PortalId = Convert.ToInt32(dr(“PortalId”))
f.Size = Convert.ToInt32(dr(“Size”))
f.Width = Convert.ToInt32(dr(“Width”))
Return f

194

Chapter 7

11_595636 ch07.qxd 5/10/05 10:03 PM Page 194

Finally
If Not dr Is Nothing Then

dr.Close()
End If

End Try

Instead of writing all of that code, the CBO Hydrator can be used to greatly simplify things. The code
snippet in Listing 7-5 does the same thing as the code in Listing 7-4, only it uses the CBO Hydrator.

Listing 7-5: Filling an Object Using the CBO Hydrator

Return CType(CBO.FillObject(DataProvider.Instance().GetFolder(PortalID, _
FolderPath), GetType(Services.FileSystem.FolderInfo)), FolderInfo)

This section covered how Custom Business Objects are used throughout DotNetNuke to create a truly
object-oriented design. The objects provide for type safety and enhance performance by allowing code to
work with disconnected collections rather than with DataReaders, DataTables, or DataSets. Use the CBO
Hydrator whenever possible to reduce the amount of coding and to enhance the maintainability of the
application.

Architectural Overview
The DotNetNuke architecture permits the application tiers to be distributed across two servers: the web
server and the database server, as shown in Figure 7-3. The web server contains the presentation, busi-
ness logic, and data access layers. The database server contains the data layer.

Figure 7-3

Clients

Browser
Module

(User Control)

Custom Business
Objects (CBO)

Exception
Management

CBO Controllers

Business Logic

Caching Services

Localization

Event Logging

Personalization

Search

Common Data
Provider

Microsoft SQL
Data Provider

Implementation

Other Data
Provider

Implementation

Data Access Data

Database Server

Skin &
Skin Objects

Containers

Default.aspx

Presentation

Microsoft
SQL Server

Other Data
Store

Web Server

195

DotNetNuke Architecture

11_595636 ch07.qxd 5/10/05 10:03 PM Page 195

Presentation Layer
The presentation layer provides an interface for clients to access the portal application. This layer con-
sists of the following elements:

❑ Web Forms: The primary web form is the Default.aspx. This page is the entry point to the por-
tal. It is responsible for loading the other elements of the presentation layer. You can find
Default.aspx in the root installation directory.

❑ Skins: The Default.aspx web form loads the skin for the page based on the settings for each
page or portal. You can find the base Skin class in /admin/Skins/Skin.vb.

❑ Containers: The Default.aspx web form also loads the containers for the modules based on the
settings for each module, page, and portal. You can find the base Container class in /admin/
Containers/Container.vb.

❑ Module User Controls: Modules will have at least a single user control that is the user interface
for the module. These user controls are loaded by Default.aspx and embedded within the con-
tainers and skin. You can find the module user controls in .ascx files in /DesktopModules/
[module name].

❑ Client-Side Scripts: Several client-side JavaScript files are used by the core user-interface frame-
work. For instance, the /DotNetNuke/controls/SolpartMenu/spmenu.js script file is used by the
SolPartMenu control. Custom modules can include and reference JavaScript files as well. You can
find client-side JavaScript files that are used by the core in the /js folder. Some skins may use
client-side JavaScript and in this case you would find the scripts in the skin’s installation directory.
Any client-side scripts used by modules are located under the module’s installation directory.

Rendering the Presentation
When visiting a DotNetNuke portal, the web form that loads the portal page is Default.aspx. The code-
behind for this page ($AppRoot/Default.aspx.vb) loads the selected skin for the active page. The Skin is
a user control that must inherit from the base class DotNetNuke.UI.Skins.Skin. The Skin class is where
most of the action happens for the presentation layer.

First, the Skin class iterates through all of the modules that are associated with the portal page. Each
module has a container assigned to it; the container is a visual boundary that separates one module from
another. The container can be assigned to affect all modules within the entire portal, all modules within
a specific page, or a single module. The Skin class loads the module’s container and injects the module
control into the container.

Next, the Skin class determines whether the module implements the DotNetNuke.Entities.Modules
.iActionable interface. If it does, the Skin class discovers the actions that the module has defined and
adds them to the container accordingly.

Next, the Skin class adds references to the module’s style sheets to the rendered page. It looks for a file
named module.css in the specific module’s installation directory. If it exists, it adds an HtmlGenericControl
to the page to reference the style sheet for the module.

All of this happens within the Skin class in the Init event as shown in Figure 7-4. The final rendering of
the contents of a module is handled within each module’s event life cycle.

196

Chapter 7

11_595636 ch07.qxd 5/10/05 10:03 PM Page 196

Figure 7-4

Finally, the code-behind ($AppRoot/Default.aspx.vb) renders the appropriate cascading style sheet links
based on the configuration of the portal and its skin. See Chapter 13 for more details on style sheets and
the order they are loaded in.

Business Logic Layer
The business logic layer provides the business logic for all core portal activity. This layer exposes many
services to core and third-party modules. These services include

❑ Localization

❑ Caching

❑ Exception Management

❑ Event Logging

❑ Personalization

Default.aspx

Skin

Load
Modules

CSS StyleSheets Module Info

Module Actions Skin Pane

Container

1. Load Skin1. Load Skin

2. Load and Render Modules2. Load and Render Modules

7. Add Module7. Add Module
CSS StylesheetsCSS Stylesheets

3. Get Module3. Get Module
InfoInfo

5. Inject Module Into5. Inject Module Into
Container andContainer and

Add to Skin PaneAdd to Skin Pane

4. Load4. Load
ContainerContainer

6. Add Module6. Add Module
ActionsActions

1. Load Skin

2. Load and Render Modules

7. Add Module
CSS Stylesheets

3. Get Module
Info

5. Inject Module Into
Container and

Add to Skin Pane

4. Load
Container

6. Add Module
Actions

197

DotNetNuke Architecture

11_595636 ch07.qxd 5/10/05 10:03 PM Page 197

❑ Search

❑ Installation & Upgrades

❑ Security

The business logic layer is also home to custom business objects that represent most entities that collec-
tively make up the portal. Custom business objects are discussed in more detail later in this chapter. For
now it is important to understand that the fundamental purpose of custom business objects is to store
information about an object.

Data Access Layer
The data access layer provides data services to the business logic layer. This layer allows for data to flow
to and from a data store.

As described earlier in this chapter, the data access layer uses the Provider Model to allow DotNetNuke
to support a wide array of data stores. The data access layer consists of two elements:

❑ Data Provider API: This is an abstract base class that establishes the contract that the implemen-
tation of the API must fulfill.

❑ Implementation of Data Provider API: This class inherits from the Data Provider API class and
fulfills the contract by overriding the necessary members and methods.

The core DotNetNuke release provides a Microsoft SQL Server implementation of the Data
Provider API.

Beginning with the CBO Controller class, the following code snippets show how the Data Provider API
works with the Implementation of the Data Provider API. Listing 7-6 shows how the IDataReader that is
sent into CBO.FillObject is a call to DataProvider.Instance().GetFolder(PortalID, FolderPath).

Listing 7-6: The FolderController.GetFolder Method

Public Function GetFolder(ByVal PortalID As Integer, ByVal FolderPath As String) As
FolderInfo

Return CType(CBO.FillObject(DataProvider.Instance().GetFolder(PortalID, _
FolderPath), GetType(Services.FileSystem.FolderInfo)), FolderInfo)

End Function

Figure 7-5 breaks down each of the elements in this method call.

Figure 7-5

Data
Provider

API

Returns
Instance of the
Implementation

of the Data
Provider API

Method that is required by
the Data Provider API

contract.

DataProvider.Instance().GetFolder(PortalID, FolderPath)

198

Chapter 7

11_595636 ch07.qxd 5/10/05 10:03 PM Page 198

The Instance() method is returning an instance of the implementation of the Data Provider API, and is
therefore executing the method in the provider itself. The GetFolder method called in Listing 7-6 is an
abstract method that is detailed in Listing 7-7.

Listing 7-7: The DataProvider.GetFolder Abstract Method

Public MustOverride Function GetFolder(ByVal PortalID As Integer, _
ByVal FolderPath As String) As IDataReader

This abstract method is part of the contract between the API and the implementation of the API. It is
overridden in the implementation of the API as shown in Listing 7-8.

Listing 7-8: The SQLDataProvider.GetFolder Method

Public Overloads Overrides Function GetFolder(ByVal PortalID As Integer, ByVal _
FolderPath As String) As IDataReader

Return CType(SqlHelper.ExecuteReader(ConnectionString, DatabaseOwner & _
ObjectQualifier & “GetFolders”, GetNull(PortalID), -1, FolderPath), _
IDataReader)

End Function

Microsoft Data Access Application Block
Listing 7-8 shows a reference to the SqlHelper class. This class is part of the Microsoft Data Access
Application Block. DotNetNuke uses the Data Access Application Block to improve performance and
reduce the amount of custom code required for data access. The Data Access Application Block is a .NET
component that works with ADO.NET to call stored procedures and execute SQL commands on
Microsoft SQL Server.

Data Layer
The data layer provides data to the data access layer. The data store used in the data layer must be sup-
ported by the implementation of the Data Provider API to fulfill the data requests.

Because the DotNetNuke Data Provider model is so extensible, several Data Providers are available.
These include both core-released Data Providers and providers released by third-party developers
including Microsoft SQL Server, Microsoft Access, mySQL, and Oracle providers. The core DotNetNuke
release provides a Microsoft SQL Server implementation of the Data Provider API.

Installation Scripts
Along with the implementation of the API is a collection of scripts that create the database in the data layer
during the installation process. These scripts collectively create the database tables, stored procedures, and
data necessary to run DotNetNuke. The installation scripts are run only during a new installation and are
run from the DotNetNuke.Services.Upgrade.Upgrade.InstallDNN method. Following are the scripts:

❑ DotNetNuke.SetUp.SqlDataProvider: This script prepares the database for the installation by
dropping some key tables.

❑ DotNetNuke.Schema.SqlDataProvider: This script installs the tables and stored procedures.

❑ DotNetNuke.Data.SqlDataProvider: This script fills the tables with data.

199

DotNetNuke Architecture

11_595636 ch07.qxd 5/10/05 10:03 PM Page 199

Upgrade Scripts
For subsequent upgrades performed after the initial installation, a collection of scripts are run that mod-
ify the schema or data during the upgrade process. These scripts are run from the DotNetNuke.Services
.Upgrade.Upgrade.UpgradeDNN method. There is one script per baseline version of DotNetNuke.
A baseline version is a working version of DotNetNuke that represents some internal milestone. For
instance, after the core team integrates a major new feature, such as the Member Role provider, the code
is tested, compiled, and zipped up for distribution among the core team. This doesn’t necessarily mean
there is one script per released version of DotNetNuke because behind the scenes we may have several
baseline versions before a formal public release.

The file naming convention includes the version of the script followed by the “SqlDataProvider” extension.
The extension must be the same name as found in the DefaultProvider attribute of the Data Provider’s con-
figuration settings in the web.config file. For example, the filename for the upgrade script for upgrading
from baseline version 3.0.11 to 3.0.12 is 03.00.12.SqlDataProvider.

When the DotNetNuke application is upgraded to another version, these scripts will be executed in logi-
cal order according to the version number. Only the scripts with a version number that is less than or
equal to the value of the constant DotNetNuke.Common.Globals.glbAppVersion will be run. This con-
stant is defined in the /components/Shared/Globals.vb file.

Script Syntax
These scripts are written in SQL; however, two non-SQL tags are used in the scripts that are important
to understand. These tags are {databaseOwner} and {objectQualifier}. Both of these tags represent a pro-
grammatically replaceable element of the script. Earlier in this chapter, Listing 7-1 showed that the
configuration settings for the Microsoft SQL Server Data Provider implementation include two XML
attributes named databaseOwner and objectQualifier. The databaseOwner attribute defines the database
owner to append to data objects in the scripts. The objectQualifier attribute defines a string to prefix the
data objects within the scripts.

As an example, take a look at how we create the GetSearchSettings stored procedure in the
03.00.04.SqlDataProvider script (see Listing 7-9).

Listing 7-9: A SqlDataProvider Upgrade Script

CREATE PROCEDURE {databaseOwner}{objectQualifier}GetSearchSettings
@ModuleID int

AS
SELECT tm.ModuleID,

settings.SettingName,
settings.SettingValue

FROM {objectQualifier}Tabs searchTabs INNER JOIN
{objectQualifier}TabModules searchTabModules

ON searchTabs.TabID = searchTabModules.TabID INNER JOIN
{objectQualifier}Portals p

ON searchTabs.PortalID = p.PortalID INNER JOIN
{objectQualifier}Tabs t

ON p.PortalID = t.PortalID INNER JOIN
{objectQualifier}TabModules tm

ON t.TabID = tm.TabID INNER JOIN

200

Chapter 7

11_595636 ch07.qxd 5/10/05 10:03 PM Page 200

{objectQualifier}ModuleSettings settings
ON searchTabModules.ModuleID = settings.ModuleID

WHERE searchTabs.TabName = N’Search Admin’
AND tm.ModuleID = @ModuleID
GO

In Listing 7-9, the code looks like SQL with the addition of these two non-SQL tags. The first line, shown
below, will create a new stored procedure. It will be created in the context of the databaseOwner defined
in web.config and the name of the stored procedure will be prefixed with the objectQualifier value from
web.config.

CREATE PROCEDURE {databaseOwner}{objectQualifier}GetSearchSettings

If in the web.config settings the databaseOwner is set to “dbo” and the objectQualifier is set to “DNN,”
the preceding line would be programmatically converted to

CREATE PROCEDURE dbo.DNN_GetSearchSettings

The objectQualifier attribute is useful when you want to maintain multiple instances of DotNetNuke in
the same database. For instance, you could have a single web server with 10 DotNetNuke installations
on it, each using the same database. But you wouldn’t want these 10 installations using the same data
tables. The objectQualifier adds the flexibility for you to store data from multiple DotNetNuke installa-
tions in the same database.

Security Model
Until DotNetNuke 3.0, the portal only offered a single security solution; the forms-based security that
was included with the core release. The forms-based security worked well, but it limited the ability to
implement DotNetNuke in way that tightly integrates with other security mechanisms. Although
Windows authentication was never supported by the core, enhancements by third-party developers are
available that allow Windows authentication to be used in versions prior to DotNetNuke 3.0.

Before diving into the details of how the Membership/Roles API works in DotNetNuke 3.0, it is impor-
tant to understand how security works in ASP.NET 2.0. This will help you understand the challenges we
faced in implementing the API, which will help you understand the finer details of how security works
in DotNetNuke today.

Security in ASP.NET 2.0
In ASP.NET 1.x, the native authentication and authorization services relied on external data stores or
configuration in the web.config file. For example, in ASP.NET 1.1 an application can provide forms-
based authentication. This requires the developer to create a login form and associated controls to
acquire, validate, and manage user credentials. Once authenticated, authorization was provided through
XML configurations in the web.config file.

In ASP.NET 2.0, the introduction of several new security enhancements expands on these services in
three distinct ways:

201

DotNetNuke Architecture

11_595636 ch07.qxd 5/10/05 10:03 PM Page 201

❑ Login & User Controls: A new suite of login and user controls provide plenty of functionality
out of the box, which reduces the need for each application to provide its own login and user
controls. For instance, it is easy to generate a set of pages for registering a new user, allowing an
existing user to log in, and even handle forgotten passwords by simply placing the appropriate
controls on a page and setting a few properties.

❑ User Management: ASP.NET 2.0 provides a new configuration interface for each application
that allows for easy management of that application. One feature of the configuration interface
is the ability to manage security for the application. For instance, you can easily create a new
user and a new role, and then add the user to the role all within the ASP.NET 2.0 native configu-
ration interface. As an alternative to the configuration interface, security can be managed by
writing a custom management tool to access the same functionality programmatically.

❑ Membership/Roles Provider: This new provider is the conduit between the presentation layer
(specifically the login/user controls and the configuration interface) and the persistence mecha-
nism. It encapsulates all of the data access code required to manage users and roles.

Together these three components reduce the amount of code that is required to provide authentication
and authorization services and persist the data to a data store.

DotNetNuke and ASP.NET 2.0
To build an application that fully supports authentication and authorization in ASP.NET 2.0, the
Membership/Roles provider should be integrated into the application. Several benefits exist to using
this provider in an application. First, it can reduce the amount of code that is written to bring these ser-
vices to the application. This is true as long as the business requirements fall within the functionality
that the default Membership/Roles provider provides. Second, implementing the Membership/Roles
provider can allow other applications to share user and role information with the application. With
regard to security, this provides seamless integration between diverse applications.

Because ASP.NET 2.0 was not released at the time of the DotNetNuke 3.0 development cycle, we lever-
aged a backported version of the Membership/Roles provider created by Microsoft. This backported
version conforms to the same API as is found in ASP.NET 2.0, except it will run in ASP.NET 1.1. This has
been a great addition to DotNetNuke for many reasons, but one key benefit is that it allows DotNetNuke
to conform to several ASP.NET 2.0 specifications even before ASP.NET 2.0 is released.

Security in DotNetNuke 3.0
Security in DotNetNuke 3.0 has been implemented with quite a bit of forward thinking. We have combined
the best features of prior versions of DotNetNuke with the features of the ASP.NET 2.0 Membership/Roles
Provider. The result is a very extensible security model that aligns DotNetNuke closely with best practice
security models that will be in ASP.NET 2.0.

Portals and Applications
DotNetNuke supports running many portals from a single DotNetNuke installation. Each portal has its
own users and roles that are not shared with any other portals. A portal is identified by a unique key, the
PortalID.

202

Chapter 7

11_595636 ch07.qxd 5/10/05 10:03 PM Page 202

Because the default Membership/Role Provider implementation is a generic solution, it does not
natively support the concept of having multiple portals, each with their own users and roles. The default
Membership/Role Provider implementation was designed in a way that only supports a single portal
site in a DotNetNuke installation. The Membership/Role Provider refers to the DotNetNuke installation
as an “application,” and without customization that application can only support a single set of users
and roles (a single portal instance).

To overcome this limitation, a wrapper was needed for the SQL data providers that were provided with
the Membership/Role Providers. This customization allows us to support application virtualization. The
end result is that the Membership/Role Providers, as implemented in DotNetNuke, can support multi-
ple applications (multiple portal instances in a single DotNetNuke installation). We mapped PortalID in
DotNetNuke to the ApplicationName in the Membership/Role Provider. When a call is made to the
Membership/Role Provider, the ApplicationName is switched on-the-fly to match the PortalID of the
portal instance.

The custom implementations of the SQL data providers for the Membership/Role Providers can be
found in

❑ $AppRoot\Providers\MembershipProviders\CoreProvider\DataProviders\DNNSQL
MembershipProvider

❑ $AppRoot\Providers\ProfileProviders\CoreProvider\DataProviders\DNNSQLProfileProvider

❑ $AppRoot\Providers\RoleProviders\CoreProvider\DataProviders\DNNSQLRoleProvider

Data Model for Users and Roles
In order to achieve the full benefit from the Membership/Roles Provider, it is important to recognize
that User and Role information can be externalized from DotNetNuke and stored in a data store that is
independent of the main data store. For instance, DotNetNuke may use Microsoft SQL Server as its
database to store content and system settings, but the Membership/Roles Provider may use Windows
authentication, LDAP, or another mechanism to handle authentication and authorization. Because secu-
rity can be externalized using the Provider Model, it was important to ensure that the implementation
of the Membership/Roles Provider didn’t customize any code or database tables used by the provider.
The data tables used by the provider had to be independent from the other core DotNetNuke tables. We
could not enforce referential integrity between DotNetNuke data and the Membership/Roles Provider
data, nor could we use cascade deletes or other data-level synchronization methods. In a nutshell, all of
the magic had to happen in the business layer.

One challenge we faced in implementing the Membership/Roles Provider was dealing with the fields
that DotNetNuke currently supports but the Membership/Roles Provider does not support. Ideally, we
would have completely replaced the DotNetNuke authentication/authorization-related tables with the
tables used by the Membership/Roles Provider. We could not achieve this goal because the authentica-
tion/authorization tables in DotNetNuke were already tied to so many existing and necessary features
of the application. For instance, the DotNetNuke “Users” table has a column named “UserID,” which is
a unique identifier for a user. This UserID is used in nearly all core and third-party modules as well as
the core. The most significant problem with UserID was that it doesn’t exist in the Membership/Roles
Provider. Instead, the Membership/Roles Provider uses the username as the unique key for a user
within an application. The challenge was that we needed a way to maintain the UserID to preserve the
DotNetNuke functionality that depended on it. This is just one example of an attribute that cannot be
handled by the default Membership/Roles Provider provided by Microsoft.

203

DotNetNuke Architecture

11_595636 ch07.qxd 5/10/05 10:03 PM Page 203

Ultimately, we decided that we would need to maintain satellite tables to support the DotNetNuke
attributes that could not be managed by the Membership/Roles Provider. The goal was to maintain
enough information in the DotNetNuke tables so that functionality was not lost, and offload whatever
data we can to the Membership/Roles Provider tables. The end result is a data model that mirrors the
Membership/Roles Provider data tables, as shown in Figure 7-6.

Figure 7-6

Note in Figure 7-6 that none of the tables on top have database relationships to the any of the tables on
the bottom. The lines connecting them simply show their relationship in theory, not an actual relation-
ship in the database.

UserId

aspnet_Membership

Password

PasswordFormat

PasswordSalt

MobilePIN

Email

LoweredEmail

PasswordQuestion

PasswordAnswer

IsApproved

IsLockedOut

CreateDate

ApplicationName

aspnet_Applications

LoweredApplicationName

ApplicationId

Description

UserId

aspnet_Profile

PropertyNames

PropertyValuesString

PropertyValuesBinary

LastUpdatedDate

ApplicationId

aspnet_Users

UserId

UserName

LoweredUserName

MobileAlias

IsAnonymous

LastActivityDate

PortalId

Portals

PortalName

LogoFile

FooterText

ExpiryDate

UserRegistration

BannerAdvertising

AdministratorId

Currency

HostFee

HostSpace

AdministratorRoleId

RoleId

Roles

PortalId

RoleName

Description

ServiceFee

BillingFrequency

TrialPeriod

TrialFrequency

BillingPeriod

TrialFee

IsPublic

AutoAssignment

UserId

Users

PortalId

UserName

FirstName

LastName

IsSuperUser

AffiliateId

UserRoleId

UserRoles

UserId

RoleId

ExpiryDate

IsTrialUsed

ProfileId

Profile

UserId

PortalId

ProfileData

CreatedDate

ApplicationId

aspnet_Roles

RoleId

RoleName

LoweredRoleName

Description

UserId

aspnet_UsersInRoles

RoleId

Synchronization and Aggregation

204

Chapter 7

11_595636 ch07.qxd 5/10/05 10:03 PM Page 204

Because the data for portals, profiles, users, and roles is stored in multiple unrelated tables, the business
layer is responsible for aggregating the data. For instance, you cannot get a complete representation of a
user without collecting data from both the aspnet_Users table (from the Membership/Roles Provider)
and the Users table (native DotNetNuke table). Therefore, the business layer is responsible for combin-
ing the data from both data structures.

In addition to aggregation, synchronization must also be done to automatically synchronize data
between the tables used by the Membership/Roles Provider and the native DotNetNuke tables. Earlier
in this chapter you learned that the Membership/Roles Provider supports a wide array of data stores,
and in ASP.NET 2.0 the data in those data stores can be managed through a common application config-
uration utility. If a user is added through this common application configuration utility, the user will not
be added to the native DotNetNuke tables. Also, if your Membership/Roles Provider uses an LDAP
implementation, for instance, a user could be added to LDAP and the user would not be added to the
native DotNetNuke tables. It is for this reason that we need to provide synchronization services between
the two data structures.

In DotNetNuke 3.0, the introduction of the Membership/Roles API has brought extensibility to the secu-
rity framework. We have purposely positioned DotNetNuke 3.0 to implement several ASP.NET 2.0 fea-
tures so we can convert to ASP.NET 2.0 more quickly and easily. This also provides a great opportunity
to learn about some new features found in ASP.NET 2.0 early on.

Namespace Overview
Prior to DotNetNuke 3.0 the namespace overview would have been fairly concise, considering nearly
all classes fell under the root DotNetNuke namespace. In DotNetNuke 3.0, we brought structure to the
namespace hierarchy by completely reorganizing the namespaces and class locations. Figure 7-7 shows
the second-level namespaces that fall under the root “DotNetNuke” namespace, and the list that follows
explains each one.

Figure 7-7

❑ DotNetNuke.Common: This namespace is used for all classes that are used throughout the
entire DotNetNuke application. For example, the global constants that are used throughout
the application are found in the DotNetNuke.Common.Globals class.

❑ DotNetNuke.Data: This namespace is used for any classes relating to the data access layer. For
example, the DataProvider base class for the Data Provider API is in the DotNetNuke.Data
namespace.

205

DotNetNuke Architecture

11_595636 ch07.qxd 5/10/05 10:03 PM Page 205

❑ DotNetNuke.Entities: This namespace is used for the classes that represent and manage the
five entities that make a portal. They are Host, Portals, Tabs, Users, and Modules. Note that the
Modules namespace that falls under DotNetNuke.Entities is home to the functionality behind
managing modules. The actual modules themselves have their own second-level namespace
defined below (DotNetNuke.Modules).

❑ DotNetNuke.Framework: This namespace is home to several base classes and other utilities
used by the DotNetNuke application.

❑ DotNetNuke.Modules: This namespace is used for organizing portal modules. There is a child
namespace in the core named DotNetNuke.Modules.Admin, which is where the classes for all
of the core admin modules reside. For instance, the Host Settings module is found in the
DotNetNuke.Modules.Admin.Host.HostSettingsModule class.

❑ DotNetNuke.Security: This namespace is used for authorization and authentication classes.
This includes tab permissions, module permissions, folder permissions, roles, and other portal
security classes.

❑ DotNetNuke.Services: This namespace is used for any services the core provides for modules.
In this namespace the child namespaces for exception management, localization, personalization,
search, and several others reside.

❑ DotNetNuke.UI: This namespace is used for any user interface classes. For example, the Skin
and Container classes are found in DotNetNuke.UI.Skins.Skin and DotNetNuke.UI.Containers
.Container, respectively.

Summary
This chapter covered the architecture of the DotNetNuke application. Here are key points to understand
about the architecture:

❑ The Provider Model design pattern has enhanced DotNetNuke with greater extensibility with-
out having to make core changes to realize that extensibility.

❑ The use of Custom Business Objects along with the CBO Hydrator has created a foundation for
developers to code using best practice standards that allow them to build more maintainable
modules and providers that perform well.

❑ The n-tier architecture of the DotNetNuke application provides exceptional layer abstraction
and better application maintainability.

❑ The Membership/Role Provider in DotNetNuke has created a very extensible security model
that showcases an API that mirrors the API found in ASP.NET 2.0.

❑ The namespace model is organized in a logical hierarchy, making it easy to find the classes used
most often.

The next chapter covers the DotNetNuke API to familiarize you with many of the powerful services the
DotNetNuke core application provides developers.

206

Chapter 7

11_595636 ch07.qxd 5/10/05 10:03 PM Page 206

Core DotNetNuke APIs

Introduction
DotNetNuke provides significant capability straight out of the box. Just install and go. Sometimes,
however, you may need to extend the base framework. DotNetNuke provides a variety of integra-
tion points: from HTTP Modules to providers to custom modules. In order to fully take advantage
of the framework, it is important to understand some of the base services and APIs provided by
DotNetNuke.

This chapter examines some of the core services provided by DotNetNuke. These services can be
used from within your own code. Since most of the core services are built using the Provider
design pattern, it is also possible to swap out the base functionality. If you need your events
logged to a custom database or the Windows Event Logs, then just create your own provider.

The second part of this chapter covers several HTTP Modules that are installed with DotNetNuke.
These modules provide features like Friendly URLs, Exception Management, and Users Online.
Many of the providers installed with DotNetNuke use HTTP Modules to hook into the request
processing pipeline. By examining the code used in the core HTTP Modules, you can build your
own custom extensions that can be used in DotNetNuke as well as other ASP.NET applications.

The final section examines some of the core interfaces that you can implement in your own mod-
ules. These interfaces simplify the process of adding common features to your module, whether it
is the module menu, searches, importing and exporting, or even custom upgrade logic. All of these
services can be implemented using core interfaces. By using these interfaces in your modules you
can provide some of the same features you see in the core DotNetNuke modules with very little
coding effort.

12_595636 ch08.qxd 5/10/05 9:56 PM Page 207

Event Logging
The Logging Provider in DotNetNuke provides a very configurable and extensible set of logging services.
It is designed to handle a wide array of logging needs including exception logging, event auditing, and
security logging. As you may have gathered from its name, the Logging Provider uses the Provider model
design pattern. This allows the default XML Logging Provider to be replaced with another logging mech-
anism without having to make changes to the core code. This section covers the ways you can use the
Logging Provider to log events in custom modules.

Before we dive into the details of how to use the Logging Provider API, it is important to understand
some concepts and terminology that will be used in this section:

❑ Log Classification: There are two different types of log classifications in the Logging Provider.
The first is the event log classification. This encapsulates all log entries related to some type of event
within DotNetNuke. For example, you can configure the Logging Provider to write a log entry
when a login attempt fails. This would be considered an event log entry. The second log classifica-
tion is the exception log classification. You can configure the Logging Provider to log exceptions
and stack traces when exceptions are thrown within DotNetNuke. These two classifications are
distinct only because they have different needs in terms of what type of information they log.

❑ Log Type: A log type defines the type of event that creates the log entry. For example, an event
log type is LOGIN_FAILURE. The Logging Provider can react differently for each log type. You
can configure the Logging Provider to enable or disable logging for each of the log types. In the
default XML Logging Provider, you can also configure it to log each log type to a different file
and optionally send e-mail notifications upon creating new log entries for that log type.

❑ Log Type Configuration: The Logging Provider is configured via a module that is accessible
from the Log Viewer screen (the Edit Log Configuration module action). This allows you to con-
figure each log type to be handled differently by the Logging Provider.

The API
The Logging Provider functionality lives in the DotNetNuke.Services.Log.EventLog namespace. In this
namespace you will find the classes that comprise the Logging Provider API. These are listed in Table 8-1.

Table 8-1: Logging Provider Classes

Class Description

EventLogController This class inherits from LogController. It provides the methods
necessary to write log entries with the event log classification.

ExceptionLogController This class inherits from LogController. It provides the methods nec-
essary to write log entries with the exception log classification.

LogController This class provides the methods that interact with the Logging
Provider. It provides the basic methods for adding, deleting, and
getting log entries.

LogDetailInfo This class holds a single key/value pair of information from a log
entry.

208

Chapter 8

12_595636 ch08.qxd 5/10/05 9:56 PM Page 208

Class Description

LoggingProvider This abstract class provides the bridge to the implementation of
the Logging Provider.

LogInfo This class is a container for the information that goes into a log
entry.

LogInfoArray This holds an array of LogInfo objects.

LogProperties This holds an array of LogDetailInfo objects.

LogTypeConfigInfo This class is a container for the configuration data relating to how
logs of a specific log type are to be handled.

LogTypeInfo This class is a container for the log type information.

PurgeLogBuffer This is a Scheduler task that can be executed regularly if Log
Buffering is enabled.

SendLogNotifications This is a Scheduler task that can be executed regularly if any log
type is configured to send e-mail notifications.

The two controller classes, EventLogController and ExceptionLogController, are the two that bring the
most functionality to custom modules. Many of the other classes are used in concert with the controllers.

EventLogController
The EventLogController provides the methods necessary to log significant system events. This controller
class also defines the EventLogType enumeration that lists each log type that is handled by the
EventLogController. The enumerations are shown in Listing 8-1.

Listing 8-1: EventLogController.EventLogType Enumeration

Public Enum EventLogType
USER_CREATED
USER_DELETED
LOGIN_SUPERUSER
LOGIN_SUCCESS
LOGIN_FAILURE
CACHE_REFRESHED
PASSWORD_SENT_SUCCESS
PASSWORD_SENT_FAILURE
LOG_NOTIFICATION_FAILURE
PORTAL_CREATED
PORTAL_DELETED
TAB_CREATED
TAB_UPDATED
TAB_DELETED
TAB_SENT_TO_RECYCLE_BIN
TAB_RESTORED
USER_ROLE_CREATED

(continued)

209

Core DotNetNuke APIs

12_595636 ch08.qxd 5/10/05 9:56 PM Page 209

Listing 8-1: (continued)

USER_ROLE_DELETED
ROLE_CREATED
ROLE_UPDATED
ROLE_DELETED
MODULE_CREATED
MODULE_UPDATED
MODULE_DELETED
MODULE_SENT_TO_RECYCLE_BIN
MODULE_RESTORED
SCHEDULER_EVENT_STARTED
SCHEDULER_EVENT_PROGRESSING
SCHEDULER_EVENT_COMPLETED
APPLICATION_START
APPLICATION_END
APPLICATION_SHUTTING_DOWN
SCHEDULER_STARTED
SCHEDULER_SHUTTING_DOWN
SCHEDULER_STOPPED
ADMIN_ALERT
HOST_ALERT

End Enum

The EventLogController.AddLog() method has several method overloads that allow a developer to
log just about any values derived from an object or its properties. Each of the overloaded
EventLogController.AddLog() methods are detailed below.

1. To log the property names and values of a Custom Business Object, use the following method:

Public Overloads Sub AddLog(ByVal objCBO As Object, ByVal _PortalSettings As _
PortalSettings, ByVal UserID As Integer, ByVal UserName As String, ByVal _
objLogType As Services.Log.EventLog.EventLogController.EventLogType)

Parameter Type Description

objCBO Object This is a Custom Business Object.

_PortalSettings PortalSettings This is the current PortalSettings object.

UserID Integer This is the UserID of the authenticated user of the request.

UserName String This is the UserName of the authenticated user of the request.

objLogType EventLogType This is the event log type.

2. To add a log entry that has no custom properties, use the following method. This is useful if you
simply need to log that an event has occurred, but you have no requirement to log any further
details about the event.

Public Overloads Sub AddLog(ByVal _PortalSettings As PortalSettings, ByVal UserID _
As Integer, ByVal objLogType As _
Services.Log.EventLog.EventLogController.EventLogType)

210

Chapter 8

12_595636 ch08.qxd 5/10/05 9:56 PM Page 210

Parameter Type Description

_PortalSettings PortalSettings This is the current PortalSettings object.

UserID Integer This is the UserID of the authenticated user of the request.

objLogType EventLogType This is the event log type.

3. To add a log entry that has a single property name and value, use the following method.

Public Overloads Sub AddLog(ByVal PropertyName As String, ByVal PropertyValue As _
String, ByVal _PortalSettings As PortalSettings, ByVal UserID As Integer, ByVal _
objLogType As Services.Log.EventLog.EventLogController.EventLogType)

Parameter Type Description

PropertyName String This is the name of the property to log.

PropertyValue String This is the value of the property to log.

_PortalSettings PortalSettings This is the current PortalSettings object.

UserID Integer This is the UserID of the authenticated user of the request.

objLogType EventLogType This is the event log type.

4. To add a log entry that has a single property name and value and the LogType is not defined in
a core enumeration, use the following method. This is useful for custom modules that define
their own log types.

Public Overloads Sub AddLog(ByVal PropertyName As String, ByVal PropertyValue As _
String, ByVal _PortalSettings As PortalSettings, ByVal UserID As Integer, ByVal _
LogType As String)

Parameter Type Description

PropertyName String This is the name of the property to log.

PropertyValue String This is the value of the property to log.

_PortalSettings PortalSettings This is the current PortalSettings object.

UserID Integer This is the UserID of the authenticated user of the request.

LogType String This is the event log type string.

5. To add a log entry that has multiple property names and values, use the following method. To
use this method you must send into it a LogProperties object that is comprised of a collection of
LogDetailInfo objects.

Public Overloads Sub AddLog(ByVal objProperties As LogProperties, ByVal _
_PortalSettings As PortalSettings, ByVal UserID As Integer, ByVal LogTypeKey As _
String, ByVal BypassBuffering As Boolean)

211

Core DotNetNuke APIs

12_595636 ch08.qxd 5/10/05 9:56 PM Page 211

Parameter Type Description

objProperties LogProperties This is a collection of LogDetailInfo objects.

_PortalSettings PortalSettings This is the current PortalSettings object.

UserID Integer This is the UserID of the authenticated user of the request.

LogTypeKey String This is the event log type.

BypassBuffering Boolean Specifies whether to write directly to the log (true) or to use
log buffering (false) if log buffering is enabled.

Two of the most used overloaded methods for EventLogController.AddLog() are discussed in the fol-
lowing section. To exemplify the flexibility of this method, Listing 8-2 shows an example of how you can
send in a Custom Business Object and automatically log its property values.

Listing 8-2: EventLogController.AddLog Example

Private Sub TestUserInfoLog()
Dim objUserInfo As New UserInfo
objUserInfo.FirstName = “John”
objUserInfo.LastName = “Doe”
objUserInfo.UserID = 6
objUserInfo.Username = “jdoe”
Dim objEventLog As New Services.Log.EventLog.EventLogController
objEventLog.AddLog(objUserInfo, PortalSettings, UserID, UserInfo.Username, _

Services.Log.EventLog.EventLogController.EventLogType.USER_CREATED)
End Sub

The resulting log entry written by the default XML Logging Provider for this example includes each
property name and value in the objUserInfo object as shown in the <properties/> XML element in
Listing 8-3.

Listing 8-3: EventLogController.AddLog Log Entry

<logs>
<log LogGUID=”92ca39e4-a135-475a-8c0c-7e4949c359b7” LogFileID=”b86359bb-

e984-4483-891b-26a2b95bf9bd”
LogTypeKey=”USER_CREATED” LogUserID=”-1” LogUserName=”” LogPortalID=”0”

LogPortalName=”DotNetNuke”
LogCreateDate=”2005-02-04T14:33:46.9318672-05:00”

LogCreateDateNum=”20050204143346931”
LogServerName=”DNNTEST”>
<properties>

<property>
<name>UserID</name>
<value>6</value>

</property>
<property>

<name>FirstName</name>
<value>John</value>

</property>

212

Chapter 8

12_595636 ch08.qxd 5/10/05 9:56 PM Page 212

<property>
<name>LastName</name>
<value>Doe</value>

</property>
<property>

<name>UserName</name>
<value>jdoe</value>

</property>
</properties>

</log>
</logs>

This example logs each of the properties of a Custom Business Object. There are other overloaded
EventLogController.AddLog() methods available if you need to log less information, or information
that isn’t stored in a Custom Business Object. The example in Listing 8-4 shows how you can use the
EventLogController.AddLog() method to add a single key/value pair to the log.

Listing 8-4: EventLogController.AddLog Example

Private Sub TestCreateRole()

Dim objRoleController As New RoleController
Dim objRoleInfo As New RoleInfo

‘create and add the new role
objRoleInfo.RoleName = “Newsletter Subscribers”
objRoleInfo.PortalID = 5
objRoleController.AddRole(objRoleInfo)

‘log the event
Dim objEventLog As New Services.Log.EventLog.EventLogController
objEventLog.AddLog(“Role”, objRoleInfo.RoleName, PortalSettings, _
UserId, objEventLog.EventLogType.USER_ROLE_CREATED)

End Sub

In this case, the key Role and the value Newsletter Subscribers will be logged. The resulting log entry
written by the default XML Logging Provider for this example is shown in the <properties/> XML ele-
ment in Listing 8-5.

Listing 8-5: EventLogController.AddLog Log Entry

<logs>
<log LogGUID=”2145856a-1e4a-4974-86f6-da1f0ae5dcca” LogFileID=”b86359bb-

e984-4483-891b-26a2b95bf9bd”
LogTypeKey=”ROLE_CREATED” LogUserID=”1” LogUserName=”host”

LogPortalID=”0” LogPortalName=”DotNetNuke”
LogCreateDate=”2005-02-04T22:00:22.0413424-05:00”

LogCreateDateNum=”20050204220022041”
LogServerName=”DNNTEST”>
<properties>

<property>
<name>RoleName</name>

(continued)

213

Core DotNetNuke APIs

12_595636 ch08.qxd 5/10/05 9:56 PM Page 213

Listing 8-5: (continued)

<value>Newsletter Subscribers</value>
</property>

</properties>
</log>

</logs>

ExceptionLogController
The ExceptionLogController exposes the methods necessary for adding information about exceptions
to the log. This controller class also defines the ExceptionLogType enumeration. Some examples of
ExceptionLogTypes defined in the enumeration are GENERAL_EXCEPTION, MODULE_LOAD_
EXCEPTION, and PAGE_LOAD_EXCEPTION. By defining different log types for exceptions, the configu-
ration of the Logging Provider can treat each exception log type differently with regards to how and if the
exceptions get logged.

We will cover exceptions in more detail in the next section. For now, we will focus on how to log the
exceptions. The ExceptionLogController.AddLog() method has three overloaded methods that allow you
to pass in various types of exceptions. The first method allows you to send in a System.Exception or any
exception that inherits System.Exception, as shown in Listing 8-6.

Listing 8-6: ExceptionLogController.AddLog Example

Public Sub test()
Try

If 1 = 1 Then
Throw New Exception(“Oh no, an exception!”)

End If
Catch exc As Exception

Dim objExceptionLog As New Services.Log.EventLog.ExceptionLogController
objExceptionLog.AddLog(exc)
‘a shortcut to this is simply “LogException(exc)”

End Try
End Sub

In this case, the properties of the System.Exception will be logged along with a collection of properties
that are specific to the request. For instance, it will log the filename, line, and column number the excep-
tion occurred in if it is available. The resulting log entry written by the default XML Logging Provider
for this example is shown in Listing 8-7.

Listing 8-7: ExceptionLogController.AddLog Log Entry

<logs>
<log LogGUID=”39c72059-bcd1-42ca-8886-002363d1c9dc” LogFileID=”6b780a60-

cf46-4588-8a76-75ae9c577277”
LogTypeKey=”GENERAL_EXCEPTION” LogUserID=”-1” LogUserName=””

LogPortalID=”-1” LogPortalName=””
LogCreateDate=”2005-02-04T23:25:44.6873456-05:00”

LogCreateDateNum=”20050204232544687”
LogServerName=”DNNTEST”>
<properties>

<property>
<name>AssemblyVersion</name>
<value>03.00.10</value>

214

Chapter 8

12_595636 ch08.qxd 5/10/05 9:56 PM Page 214

</property>
<property>

<name>Method</name>
<value>DotNetNuke.Framework.CDefault.test</value>

</property>
<property>

<name>FileName</name>
<value>c:\public\dotnetnuke\Default.aspx.vb</value>

</property>
<property>

<name>FileLineNumber</name>
<value>481</value>

</property>
<property>

<name>FileColumnNumber</name>
<value>21</value>

</property>
<property>

<name>PortalID</name>
<value>0</value>

</property>
<property>

<name>PortalName</name>
<value>DotNetNuke</value>

</property>
<property>

<name>UserID</name>
<value>-1</value>

</property>
<property>

<name>UserName</name>
<value />

</property>
<property>

<name>ActiveTabID</name>
<value>36</value>

</property>
<property>

<name>ActiveTabName</name>
<value>Home</value>

</property>
<property>

<name>AbsoluteURL</name>
<value>/DotNetNuke/Default.aspx</value>

</property>
<property>

<name>AbsoluteURLReferrer</name>
<value />

</property>
<property>

<name>ExceptionGUID</name>
<value>128455d6-064a-4222-993f-b54fd302e21e</value>

</property>
<property>

<name>DefaultDataProvider</name>

(continued)

215

Core DotNetNuke APIs

12_595636 ch08.qxd 5/10/05 9:56 PM Page 215

Listing 8-7: (continued)

<value>DotNetNuke.Data.SqlDataProvider,
DotNetNuke.SqlDataProvider</value>

</property>
<property>

<name>InnerException</name>
<value>Oh no, an exception!</value>

</property>
<property>

<name>Message</name>
<value>Oh no, an exception!</value>

</property>
<property>

<name>StackTrace</name>
<value> at DotNetNuke.Framework.CDefault.test() in

c:\public\dotnetnuke\Default.aspx.vb:line 481</value>
</property>
<property>

<name>Source</name>
<value>DotNetNuke</value>

</property>
</properties>

</log>
</logs>

Notice that Listing 8-7 does not tell you the portal module that the exception was thrown from. This is
because a general exception was thrown (System.Exception). If a ModuleLoadException is thrown, more
details about the portal module that throws the exception will be logged. The next section discusses
more on the topic of handling exceptions properly in DotNetNuke.

Exception Handling
The exception handling API in DotNetNuke provides a framework for handling exceptions uniformly
and gracefully. Exception handling is primarily handled through four methods, most of which have sev-
eral overloaded methods. Through these four methods, developers can gracefully handle exceptions, log
the exception trace and context, and display a user-friendly message to the end user.

The exception handling API lives under the DotNetNuke.Services.Exceptions namespace. Table 8-2 lists
the classes that comprise the Exception Handling API.

Table 8-2: Exception Handling Classes

Class Description

BasePortalException This class inherits from System.Exception and contains many other
properties specific to the portal application.

ErrorContainer This class generates formatting for the error message that will be
displayed in the web browser.

216

Chapter 8

12_595636 ch08.qxd 5/10/05 9:56 PM Page 216

Class Description

ExceptionInfo This class stores information from the stack trace.

Exceptions This class contains most of the methods that are used in custom
modules. It contains the methods necessary to process each type of
portal exception.

ModuleLoadException This class inherits from BasePortalException. It is an exception type
for exceptions thrown within portal modules.

PageLoadException This class inherits from BasePortalException. It is an exception type
for exceptions thrown within pages.

SchedulerException This class inherits from BasePortalException. It is an exception type
for exceptions thrown within the Scheduling Provider.

The Exceptions Class
Although there are many classes in the exception handling namespace, the primary class that module
developers deal with regularly is the Exceptions class. This class contains all of the methods necessary to
gracefully handle exceptions in DotNetNuke. The most widely used method for exception handling is
DotNetNuke.Services.Exceptions.ProcessModuleLoadException().

ProcessModuleLoadException Method
The ProcessModuleLoadException method serves two primary functions. The first is to log the excep-
tions that are thrown from within a module to the Logging Provider. The second is to display a friendly
error message in place of the module that threw the exception. Note the friendly error message will only
be displayed if the host option Use Custom Error Messages is enabled on the Host Settings page (see
Chapter 4).

This ProcessModuleLoadException method has seven overloaded methods:

1. To process an exception that occurs in a portal module, use the following method. If the Custom
Error Messages option has been enabled in Host Settings, this method will also handle display-
ing a user-friendly error message to the client browser.

Public Sub ProcessModuleLoadException(ByVal ctrlModule As _
Entities.Modules.PortalModuleBase, ByVal exc As Exception)

Parameter Type Description

ctrlModule PortalModuleBase This is the portal module object.

Exc Exception This is the exception that was thrown.

2. This method is the same as the previous one, although it provides the ability to suppress the
error message from being displayed on the client browser.

Public Sub ProcessModuleLoadException(ByVal ctrlModule As _
Entities.Modules.PortalModuleBase, ByVal exc As Exception, ByVal _
DisplayErrorMessage As Boolean)

217

Core DotNetNuke APIs

12_595636 ch08.qxd 5/10/05 9:56 PM Page 217

Parameter Type Description

ctrlModule PortalModuleBase This is the portal module object.

Exc Exception This is the exception that was thrown.

DisplayErrorMessage Boolean This indicates whether the portal should render
an error message to the client browser.

3. This is the same as the previous method; however, it adds the ability to provide a custom
friendly message to the client browser.

Public Sub ProcessModuleLoadException(ByVal FriendlyMessage As String, ByVal _
ctrlModule As Entities.Modules.PortalModuleBase, ByVal exc As Exception, _
ByVal DisplayErrorMessage As Boolean)

Parameter Type Description

FriendlyMessage String This is a friendly message to display to the client
browser.

ctrlModule PortalModuleBase This is the portal module object.

Exc Exception This is the exception that was thrown.

DisplayErrorMessage Boolean This indicates whether the portal should render
an error message to the client browser.

4. Use this overloaded method if you are handling exceptions in a control that isn’t directly in a
portal module. For instance, if your portal module uses a server control, you can use this
method to handle exceptions within that server control. It will display a friendly error message
if custom error messages are enabled.

Public Sub ProcessModuleLoadException(ByVal FriendlyMessage As String, _
ByVal UserCtrl As Control, ByVal exc As Exception)

Parameter Type Description

FriendlyMessage String This is a friendly message to display to the client
browser.

UserCtrl Control This is the control. It can be anything that inher-
its from System.Web.UI.Control.

Exc Exception This is the exception that was thrown.

5. This is the same as the previous method; however, it adds the ability to specify whether to dis-
play an error message to the client browser (the Host Settings option to Use Custom Error
Messages takes precedence over this value).

Public Sub ProcessModuleLoadException(ByVal FriendlyMessage As String, _
ByVal ctrlModule As Control, ByVal exc As Exception, _
ByVal DisplayErrorMessage As Boolean)

218

Chapter 8

12_595636 ch08.qxd 5/10/05 9:56 PM Page 218

Parameter Type Description

FriendlyMessage String This is a friendly message to display to the client browser.

ctrlModule Control This is the control. It can be anything that inherits from
System.Web.UI.Control.

Exc Exception This is the exception that was thrown.

DisplayErrorMessage Boolean This indicates whether the portal should render an error
message to the client browser.

6. This is a simple method that has only two parameters. It will display a generic error message to
the client browser if custom error messages are enabled.

Public Sub ProcessModuleLoadException(ByVal UserCtrl As Control, _
ByVal exc As Exception)

Parameter Type Description

UserCtrl Control This is the control. It can be anything that inherits from
System.Web.UI.Control.

Exc Exception This is the exception that was thrown.

7. This is the same as the previous method except it provides the ability to suppress the error mes-
sage that is displayed in the client browser (the Host Settings option to Use Custom Error
Messages takes precedence over this value).

Public Sub ProcessModuleLoadException(ByVal UserCtrl As Control, _
ByVal exc As Exception, ByVal DisplayErrorMessage As Boolean)

Parameter Type Description

UserCtrl Control This is the control. It can be anything that inherits from
System.Web.UI.Control.

Exc Exception This is the exception that was thrown.

DisplayErrorMessage Boolean This indicates whether the portal should render an error
message to the client browser.

ProcessPageLoadException Method
Similar to the ProcessModuleLoadException method, the ProcessPageLoadException method serves two
primary functions. The first is to log the exceptions thrown from outside of a module to the Logging
Provider. The second is to display a friendly error message on the page. Note the friendly error message
will only be displayed if the host option Use Custom Error Messages is enabled on the Host Settings
page (see Chapter 5).

219

Core DotNetNuke APIs

12_595636 ch08.qxd 5/10/05 9:56 PM Page 219

This ProcessPageLoadException method has two overloaded methods that are detailed below.

1. To process an exception that occurs in an ASPX file or in logic outside of a portal module, use
the following overloaded method. If the Use Custom Error Messages option has been enabled in
Host Settings, this method will also handle displaying a user-friendly error message to the client
browser.

Public Sub ProcessPageLoadException(ByVal exc As Exception)

Parameter Type Description

Exc Exception This is the exception that was thrown.

2. This is the same as the previous method; however, you must send in the URL parameter to redi-
rect the request after logging the exception.

Public Sub ProcessPageLoadException(ByVal exc As Exception, _
ByVal URL As String)

Parameter Type Description

Exc Exception This is the exception that was thrown.

URL String This is the URL to redirect the request to.

LogException Method
The LogException method is used for adding exceptions to the log. It does not handle displaying any
type of friendly message to the user. Instead, it simply logs the error without notifying the client browser
of a problem. This method has four overloaded methods that are detailed below.

1. To log an exception thrown from a module, use the following overloaded method.

Public Sub LogException(ByVal exc As ModuleLoadException)

Parameter Type Description

Exc ModuleLoadException This is the exception that was thrown.

2. To log an exception thrown from a page or other logic outside of a module, use the following
overloaded method.

Public Sub LogException(ByVal exc As PageLoadException)

Parameter Type Description

Exc PageLoadException This is the exception that was thrown.

220

Chapter 8

12_595636 ch08.qxd 5/10/05 9:56 PM Page 220

3. To log an exception thrown from within a Scheduling Provider Task, use the following over-
loaded method.

Public Sub LogException(ByVal exc As SchedulerException)

Parameter Type Description

Exc SchedulerException This is the exception that was thrown.

4. If you need to log an exception of another type, use the following overloaded method.

Public Sub LogException(ByVal exc As Exception)

Parameter Type Description

Exc Exception This is the exception that was thrown.

ProcessSchedulerException Method
The ProcessSchedulerException method is used to log exceptions thrown from within a scheduled task.
This method simply logs the error.

To log an exception thrown from a scheduled task, use the following overloaded method.

Public Sub LogException(ByVal exc As ModuleLoadException)

Parameter Type Description

Exc ModuleLoadException This is the exception that was thrown.

The exception handling API abstracts developers from the complexity of logging exceptions and pre-
senting error messages gracefully. It provides several powerful methods that handle all of the logic
involved in working with the Logging Provider and the presentation layer. The next section covers the
various interfaces that module developers can take advantage of to bring more core features to life in
their modules.

Localization
The localization API in DotNetNuke provides developers with an interface for performing multilingual
translations in custom portal modules. As of the writing of this book, DotNetNuke includes only static
localization features. In other words, only text labels and other static strings are localized by the core.
Localization of any dynamic content in a module is the responsibility of the module developer.

221

Core DotNetNuke APIs

12_595636 ch08.qxd 5/10/05 9:56 PM Page 221

Locales
A locale is the combination of a country code and a language code. For the sake of accurate translations,
it is important to use both a country code and a language code to perform localization. Many languages
are spoken in more than one country, and dialects may differ from country to country. For instance,
speaking French in Canada is different from speaking French in France. A locale accounts for this differ-
entiation. DotNetNuke supports four types of locales:

❑ System Locale: This is the locale (en-US) that DotNetNuke is natively coded to. This locale is a
system locale and cannot be changed.

❑ Default Portal Locale: This is the portal’s default locale that is specified in the Site Settings
screen (see Chapter 5). This locale will be automatically selected for any users who have not yet
defined their default locale.

❑ User Selected Locale: This is the locale that a user selects from the Registration or User
Account page.

❑ Custom Locale: A custom locale allows for customized translations to be defined for each por-
tal. The localization framework manages this by appending the PortalID onto the locale. For
instance, if Portal 2 has configured custom German translations, the custom locale for de-DE for
Portal 2 is de-DE.Portal-2.

Resource Files
To align closely to the ASP.NET 2.0 localization implementation, DotNetNuke uses the Windows
Resource Files (RESX) format to store translations. This file format uses XML tags to store key/value
pairs of string values. In the root App_Resources directory, there is a file named Template.resx.
Developers often use this file as a starting place to create their resource files.

The format of the data elements of a resource file looks like the following. This is an example of the Data
Provider: form field on the Host Settings page.

. . .
<data name=”plDataProvider.Text”>

<value>Data Provider:</value>
</data>
<data name=”plDataProvider.Help”>

<value>The provider name which is identified as the default data
provider in the web.config file</value>

</data>
. . .

Each name attribute is referred to as a resource key. Notice each of the two resource keys has an exten-
sion. DotNetNuke uses a number of extensions, which help to identify translations more easily.

❑ .Text: Used for the text properties of controls (default if not included in resource key)

❑ .Help: Used for help text

❑ .Header: Used for the headertext properties of DataGrid columns

222

Chapter 8

12_595636 ch08.qxd 5/10/05 9:56 PM Page 222

❑ .EditText: Used for the edittext properties of DataGrids

❑ .ErrorMessage: Used for the ErrorMessage property of Validator controls

There are three types of static translations in DotNetNuke. They are Application Resources, Local
Resources, and Global Resources. Each of these types of static translations is defined in the following
sections.

Application Resources
These translations are shared throughout many controls in DotNetNuke. This is the storage area for
generic translations. For instance, to localize the words True and False, you would store the translations
in the Application Resources files. Other examples of Application Resources are Yes, No, Submit, and
Continue.

Application Resources are stored in the App_GlobalResources directory, which is directly under the
DotNetNuke root installation directory. The filename for the system locale (en-US) for Application
Resources is SharedResources.resx. The file naming convention for other locales is SharedResources
.[locale].resx. For instance, the German Application Resource file is named SharedResources.de-DE.resx.

Local Resources
These translations are unique to a user control. For instance, to localize the Announcements module’s
user control, you would store the translations in a Local Resource file that lives in a child directory
beneath the Announcements module’s directory.

If the Announcements module has static translations, which are generic in nature (such as True and
False), the translations should be gathered from Application Resources.

Local Resource files are stored in a directory named App_LocalResources. Each directory that contains
localized user controls must have a directory named App_LocalResources. The filename for the System
Locale follows this naming convention:

[control_directory]/App_LocalResources/[user_control_file_name].resx.

For instance, for the en-US locale, the resource file for the Announcements module would be

Announcements/App_LocalResources/Announcements.ascx.resx.

The filename for other locales follows this naming convention:

[control_directory]/App_LocalResources/[control_files_name].[locale].resx.

Global Resources
These translations are for localizing strings from components that do not have Local Resource files, and
are not necessarily shared translations. Therefore they do not fit in the first two categories. Because all
Local Resources are associated with a user control or a page, there is no place to store translations for
components. For this reason, we added this third category for resource files. An example of Global
Resource usage is in the component admin/Containers/ActionBase.vb, which needs to localize the
word Help in the module action lists.

223

Core DotNetNuke APIs

12_595636 ch08.qxd 5/10/05 9:56 PM Page 223

Global Resources are stored in the same directory as Application Resources (/App_Resources). The file-
name for the system default locale is /App_Resources/GlobalResources.resx. For locales other than the
system default, the naming convention is

/App_Resources/GlobalResources.[locale].resx

The API
The primary focus of this section is on the DotNetNuke.Services.Localization.Localization class. This
class provides the methods necessary for localizing strings, as shown in Table 8-3.

Table 8-3: Localization Methods

Method Description

AddLocale This is used for adding a locale to the list of supported locales in
the App_GlobalResources/Locales.xml file.

GetHelpUrl This is used to replace the string [LANGUAGE] in a Help URL
with the user’s locale (or the portal’s default locale if the user has
not specified a default locale).

GetResourceFile The returns the path and filename of the resource file for a speci-
fied control.

GetString This returns the localized string based on the resource key specified.

GetSupportedLocales This returns the list locales from the App_GlobalResources/
Locales.xml file.

GetSystemMessage This localizes a string and also replaces system tokens with per-
sonalized strings.

GetTimeZones This returns a key/value pair collection of time zones.

LoadCultureDropDownList This will fill a DropDownList control with the supported cultures.

LoadTimeZoneDrop This will fill a DropDownList control with the list of time zones.
DownList

LocalizeDataGrid This will localize the headers in a DataGrid control.

LocalizeRole This localizes the three system roles.

The GetString Method
Of the methods in Table 8-3, the most widely used is the GetString method. The GetString method per-
forms localization based on the resource key passed into it. The GetString method has four overloaded
methods as detailed below.

224

Chapter 8

12_595636 ch08.qxd 5/10/05 9:56 PM Page 224

1. To localize a string value that has a translation in an Application Resource file, use the following
method. The resource file to be used will be automatically selected based on the currently active
locale. This will automatically use the currently active PortalSettings object to derive the portal’s
default locale.

Public Shared Function GetString(ByVal name As String) As String

Parameter Type Description

Name String This is the string to be localized.

2. This is identical to the previous method, except you can send in a PortalSettings object to derive
the portal’s default locale.

Public Shared Function GetString(ByVal name As String, ByVal objPortalSettings
_

As PortalSettings) As String

Parameter Type Description

Name String This is the string to be translated.

objPortalSettings PortalSettings This is the PortalSettings object for the current context.

3. To localize a string value that has a translation in a Local Resource file, use the following
method. This method accepts an incoming parameter (ResourceFileRoot) from which the
resource file to use is derived. This will automatically use the currently active PortalSettings
object to derive the portal’s default locale.

Public Shared Function GetString(ByVal name As String, ByVal ResourceFileRoot _
As String) As String

Parameter Type Description

Name String This is the string to be translated.

ResourceFileRoot String This is the value of a module’s LocalResourceFile property. It
is used to derive the resource file to be used for the translation.

4. This method allows you to specify the key name to translate, and both the resource file and por-
tal settings to use for the translation.

Public Shared Function GetString(ByVal name As String, ByVal ResourceFileRoot _
As String, ByVal objPortalSettings As PortalSettings) As String

225

Core DotNetNuke APIs

12_595636 ch08.qxd 5/10/05 9:56 PM Page 225

Parameter Type Description

Name String This is the string to be translated.

ResourceFileRoot String This is the value of a module’s LocalResourceFile property. It
is used to derive the resource file to be used for the translation.

objPortalSettings PortalSettings This is the PortalSettings object for the current context.

The GetSystemMessage Method
This method is used throughout the core code to produce localized and personalized strings. For
example, it is used frequently to send e-mail to registered users. The user registration page calls the
GetSystemMessage method to localize the content of the e-mail that gets sent to the user. The e-mail that
gets sent to the user contains personalized content, too. Therefore, rather than concatenating several
dozen strings using the GetString method and wrapping them around personalized data, the
GetSystemMessage method takes care of all of this with just one call.

This section first covers the overloads for the GetSystemMessage method, and then discusses the user
registration example.

1. Use this method if you need to localize and personalize a string when the personalization can be
derived from either the objPortal or objUser properties. By using this method, the translation
must be stored in the Application Resource file.

Public Shared Function GetSystemMessage(ByVal objPortal As PortalSettings, _
ByVal MessageName As String, ByVal objUser As UserInfo) As String

Parameter Type Description

ObjPortal PortalSettings This is the PortalSettings object for the current context. It is
used to derive any personalized content within the localized
system message string.

MessageName String This is the resource key used to get the localized system mes-
sage from the resource file.

ObjUser UserInfo This is the UserInfo object to derive any personalized content
within the localized system message string.

2. Use this method if you need to localize and personalize a string when the personalization can be
derived from either the objPortal or objUser properties. In this method you must specify the
resource file to retrieve the translation from.

Public Shared Function GetSystemMessage(ByVal objPortal As PortalSettings, _
ByVal MessageName As String, ByVal objUser As UserInfo, ByVal ResourceFile _
As String) As String

226

Chapter 8

12_595636 ch08.qxd 5/10/05 9:56 PM Page 226

Parameter Type Description

ObjPortal PortalSettings This is the PortalSettings object for the current context. It is
used to derive any personalized content within the localized
system message string.

MessageName String This is the resource key used to get the localized system mes-
sage from the resource file.

ObjUser UserInfo This is the UserInfo object to derive any personalized content
within the localized system message string.

ResourceFile String This is the resource file that the localized system message
is stored in. It is usually the value of the module’s Local
ResourceFile property.

3. This method is the similar to the previous method; however, you can specify an ArrayList of
strings that can be used in the personalization of the localized string.

Public Shared Function GetSystemMessage(ByVal objPortal As PortalSettings, _
ByVal MessageName As String, ByVal objUser As UserInfo, ByVal ResourceFile As _
String, ByVal Custom As ArrayList) As String

Parameter Type Description

ObjPortal PortalSettings This is the PortalSettings object for the current context. It is
used to derive any personalized content within the localized
system message string.

MessageName String This is the resource key used to get the localized system mes-
sage from the resource file.

ObjUser UserInfo This is the UserInfo object to derive any personalized content
within the localized system message string.

ResourceFile String This is the resource file that the localized system message is
stored in. It is usually the value of the module’s LocalRe-
sourceFile property.

Custom ArrayList This is a collection of strings that can be used for personaliz-
ing the system message.

4. Use this method if you need to localize and personalize a string when the personalization can be
derived from the objPortal property values. Also, you must specify the resource file to use for
the translation.

Public Shared Function GetSystemMessage(ByVal objPortal As PortalSettings, _
ByVal MessageName As String, ByVal ResourceFile As String) As String

227

Core DotNetNuke APIs

12_595636 ch08.qxd 5/10/05 9:56 PM Page 227

Parameter Type Description

ObjPortal PortalSettings This is the PortalSettings object for the current context. It is
used to derive any personalized content within the localized
system message string.

MessageName String This is the resource key used to get the localized system mes-
sage from the resource file.

ResourceFile String This is the resource file that the localized system message is
stored in.

5. Use this method if you need to localize and personalize a string when the personalization can be
derived from the objPortal object’s properties and the Custom ArrayList collection items. Also,
you must specify the resource file to use for the translation.

Public Shared Function GetSystemMessage(ByVal objPortal As PortalSettings, _
ByVal MessageName As String, ByVal ResourceFile As String, ByVal Custom As _
ArrayList) As String

Parameter Type Description

ObjPortal PortalSettings This is the PortalSettings object for the current context. It is
used to derive any personalized content within the localized
system message string.

MessageName String This is the resource key used to get the localized system mes-
sage from the resource file.

ResourceFile String This is the resource file that the localized system message is
stored in.

Custom ArrayList This is a collection of strings that can be used for personaliz-
ing the system message.

When using the GetSystemMessage method, you can specify several system tokens in the localized string.
These tokens are used as keys to render property values from either the UserInfo or PortalSettings
objects. The following is an example of this:

DotNetNuke.Services.Localization.Localization.GetSystemMessage(PortalSettings, _
“EMAIL_USER_REGISTRATION_PRIVATE_BODY”, objNewUser, Me.LocalResourceFile)

This code calls the GetSystemMessage method to localize and personalize the body of an e-mail message
that is sent to a newly registered user. This code is found in the Admin/Security/Register.ascx portal
module. The MessageName parameter value is EMAIL_USER_REGISTRATION_PRIVATE_BODY. This
is the resource key to lookup the system message in the resource file. The resource key and associated
translation from the resource file /Admin/Security/App_LocalResources/Register.ascx.resx is shown in
Listing 8-8.

228

Chapter 8

12_595636 ch08.qxd 5/10/05 9:56 PM Page 228

Listing 8-8: System Message Resource Example

<data name=”EMAIL_USER_REGISTRATION_PRIVATE_BODY.Text”>
<value>

Dear [User:FullName],

Thank you for registering at the [Portal:PortalName] portal website. Please read
the following information carefully and be sure to save this message in a safe
location for future reference.

Portal Website Address: [Portal:URL]
Username: [Membership:UserName]
Password: [Membership:Password]

Your account details will be reviewed by the portal Administrator and you will
receive a notification upon account activation.

Thank you, we appreciate your support...

[Portal:PortalName]

</value>
</data>

The GetSystemMessage method will first localize the string within the <value> XML node. Then it will
iterate through the system tokens (enclosed in brackets), replacing the tokens with the appropriate prop-
erty values. For instance, in Listing 8-8 you can see the token [User:FullName]. This will be replaced
with the FullName property value of the User object. In this case, the User object is the objUser object
passed into the GetSystemMessage method. Listing 8-9 shows the system message has been personal-
ized and localized with the en-US locale.

Listing 8-9: System Message Rendered Example

Dear John Doe,

Thank you for registering at the DotNetNuke portal website. Please read the
following information carefully and be sure to save this message in a safe location
for future reference.

Portal Website Address: http://test.dotnetnuke.com
Username: jdoe1234
Password: pwdjdoe1234

Your account details will be reviewed by the portal Administrator and you will
receive a notification upon account activation.

Thank you, we appreciate your support...

DotNetNuke

229

Core DotNetNuke APIs

12_595636 ch08.qxd 5/10/05 9:56 PM Page 229

Scheduler
The Scheduler in DotNetNuke is a mechanism that allows developers to schedule tasks to run at defined
intervals. It is implemented using the Provider pattern; therefore, it can easily be replaced without modi-
fying core code. Creating a scheduled task is a fairly simple process that we will cover in this section.
First, it is important to understand which types of tasks are suitable for the Scheduler.

Since the Scheduler is run under the context of the web application, it is prone to the same types of
application recycles as a web application. In a web-hosting environment, it is a common practice to con-
serve resources by recycling the worker process for a site periodically. When this happens, the Scheduler
stops running. Therefore, it is important to understand that the tasks run by the Scheduler do not run 24
hours a day, 7 days a week. Instead, the tasks are executed according to a defined schedule, but they can
only be triggered when the worker process is alive. For this reason, you cannot specify that a task should
run every night at midnight. It is not possible in the web environment to meet this type of use case.
Instead, you can specify how often a task is run by defining the execution frequency for each task. The
execution frequency is defined as every x minutes/hours/days.

To create a scheduled task, you must create a class that inherits from DotNetNuke.Services.Scheduling
.SchedulerClient. This class must provide a constructor and a DoWork method. An example of a sched-
uled task is shown in Listing 8-10. This sample scheduled task will move all event log files to a folder
named with the current date. By configuring this scheduled task to run once per day, the log files will be
automatically archived daily, which keeps the log file sizes manageable.

Listing 8-10: Scheduled Task Example

Public Class ArchiveEventLog
Inherits DotNetNuke.Services.Scheduling.SchedulerClient
Public Sub New(ByVal objScheduleHistoryItem As _

DotNetNuke.Services.Scheduling.ScheduleHistoryItem)
MyBase.new()
Me.ScheduleHistoryItem = objScheduleHistoryItem ‘REQUIRED

End Sub
Public Overrides Sub DoWork()

Try
‘notification that the event is progressing
‘this is optional
Me.Progressing() ‘OPTIONAL
‘get the directory that logs are written to
Dim LogDirectory As String
LogDirectory = Common.Globals.HostMapPath + “Logs\”

‘create a folder with today’s date
Dim FolderName As String
FolderName = LogDirectory + Now.Month.ToString + “-” + _

Now.Day.ToString + “-” + Now.Year.ToString + “\”
If Not IO.Directory.Exists(FolderName) Then

IO.Directory.CreateDirectory(FolderName)
End If

‘get the files in the log directory
Dim s As String()

230

Chapter 8

12_595636 ch08.qxd 5/10/05 9:56 PM Page 230

s = IO.Directory.GetFiles(LogDirectory)
‘loop through the files
Dim i As Integer
For i = 0 To s.Length - 1

Dim OldFileInfo As New IO.FileInfo(s(i))
‘move all files to the new folder except the file
‘used to store pending log notifications
If OldFileInfo.Name <> _

“PendingLogNotifications.xml.resources” Then
Dim NewFileName As String
NewFileName = FolderName + OldFileInfo.Name
‘check to see if the new file already exists
If IO.File.Exists(NewFileName) Then

Dim errMessage As String
errMessage = “An error occurred archiving “ + _

“log file to “ + _
NewFileName + “. The file already exists.”

LogException(New _
BasePortalException(errMessage))

Else
IO.File.Move(OldFileInfo.FullName, NewFileName)
Me.ScheduleHistoryItem.AddLogNote(“Moved “ + _

OldFileInfo.FullName + _
“ to “ + FolderName + _
OldFileInfo.Name + “.”) ‘OPTIONAL

End If
End If

Next

Me.ScheduleHistoryItem.Succeeded = True ‘REQUIRED

Catch exc As Exception ‘REQUIRED

Me.ScheduleHistoryItem.Succeeded = False ‘REQUIRED

Me.ScheduleHistoryItem.AddLogNote(String.Format(_
“Archiving log files failed.”, _
exc.ToString)) ‘OPTIONAL

‘notification that we have errored
Me.Errored(exc) ‘REQUIRED

‘log the exception
LogException(exc) ‘OPTIONAL

End Try
End Sub

End Class

Once the class has been compiled into the bin directory, the task can be scheduled from the Scheduling
module under the Host tab (see Chapter 6 for details). It is important to include each of the lines of code
in Listing 8-7 that is labeled required. These collectively ensure both the exception handling and sched-
ule management are handled uniformly throughout all scheduled tasks.

231

Core DotNetNuke APIs

12_595636 ch08.qxd 5/10/05 9:56 PM Page 231

HTTPModules
ASP.NET provides a number of options for extending the path that data takes between client and server
(known as the HTTP Pipeline). A popular method to extend the pipeline is through the use of custom
components known as HTTP Modules. An HTTP module allows you to add pre- and post-processing to
each HTTP Request coming into your application.

DotNetNuke implements a number of HTTP Modules to extend the pipeline. These modules include
features such as URL Rewriting, Exception Management, Users Online, Profile, Anonymous
Identification, Role Management, DotNetNuke Membership, and Personalization. This section
discusses each in turn.

Originally, a lot of the previously mentioned HTTP Modules were implemented inside the core applica-
tion (global.asax.vb). There were a number of reasons why the functionally was moved to HTTP
Modules:

1. Administrators can optionally enable/disable an HTTP module.

2. Developers can replace or modify HTTP Modules without altering the core application.

3. Provides templates for extending the HTTP Pipeline.

HTTP Modules 101
Before we explore each HTTP module within DotNetNuke, let’s further examine the concepts of HTTP
modules so you’ll know when and where to implement them. To understand how HTTP modules work,
it’s necessary to understand the HTTP Pipeline and how ASP.NET processes incoming requests. Figure
8-1 shows the HTTP Pipeline.

When a request is first made, it passes through a number of stages before it is actually handled by your
application. The first participant in the pipeline is Microsoft Internet Information Server (IIS); its job is to
route ASP.NET requests to the ASP.NET runtime. Once an ASPX file is requested (or any other ASP.NET
file), IIS will forward the request to the ASP.NET runtime (via an ISAPI extension).

Now that the request has been received by ASP.NET, it must pass through an instance of HttpApplication.
The HttpApplication object handles application-wide methods, data, and events. It is also responsible for
pushing the request through one or more HTTP module objects. The ASP.NET runtime determines which
modules to load by examining the configuration files located at either machine level (machine.config) or
application level (web.config). Listing 8-11 shows the HTTP modules configuration section of
DotNetNuke.

232

Chapter 8

12_595636 ch08.qxd 5/10/05 9:56 PM Page 232

Figure 8-1

Listing 8-11: HTTP Modules Configuration Section

<httpModules>
<add name=”UrlRewrite” type=”DotNetNuke.HttpModules.UrlRewriteModule,

DotNetNuke.HttpModules.UrlRewrite” />

<add name=”Exception” type=”DotNetNuke.HttpModules.ExceptionModule,
DotNetNuke.HttpModules.Exception” />

<add name=”UsersOnline” type=”DotNetNuke.HttpModules.UsersOnlineModule,
DotNetNuke.HttpModules.UsersOnline” />

<add name=”Profile” type=”Microsoft.ScalableHosting.Profile.ProfileModule,
MemberRole,
Version=1.0.0.0,
Culture=neutral,
PublicKeyToken=b7c773fb104e7562” />

<add name=”AnonymousIdentification”
type=”Microsoft.ScalableHosting.Security.AnonymousIdentificationModule,

MemberRole,
Version=1.0.0.0,

(continued)

Request

IIS

aspnet_isapi.dll

HttpApplication

HttpHandler

HttpModules

233

Core DotNetNuke APIs

12_595636 ch08.qxd 5/10/05 9:56 PM Page 233

Listing 8-11: (continued)

Culture=neutral,
PublicKeyToken=b7c773fb104e7562” />

<add name=”RoleManager”
type=”Microsoft.ScalableHosting.Security.RoleManagerModule,

MemberRole,
Version=1.0.0.0,
Culture=neutral,
PublicKeyToken=b7c773fb104e7562” />

<add name=”DNNMembership” type=”DotNetNuke.HttpModules.DNNMembershipModule,
DotNetNuke.HttpModules.DNNMembership” />

<add name=”Personalization” type=”DotNetNuke.HttpModules.PersonalizationModule,
DotNetNuke.HttpModules.Personalization” />

</httpModules>

To invoke each HTTP module, the Init method of each module is invoked. At the end of each request, the
dispose method is invoked to allow each HTTP module to clean up its resources. In fact, the two meth-
ods mentioned form the interface (IHttpModule) each module must implement. Listing 8-12 shows the
IHttpModule interface.

Listing 8-12: The IHttpModule Interface Implemented By Each HTTP Module

Public Interface IHttpModule
Sub Init(ByVal context As HttpApplication)
Sub Dispose()

End Interface

During the Init event, each module may subscribe to a number of events raised by the HttpApplication
object. Table 8-4 shows the events that are raised before the application executes. The events are listed in
the order in which they occur.

Table 8-4: HTTP Module Events (before application executes)

Event Description

BeginRequest Signals a new request; guaranteed to be raised on each request.

AuthenticateRequest Signals that the request is ready to be authenticated; used by the Secu-
rity module.

AuthorizeRequest Signals that the request is ready to be authorized; used by the Security
module.

ResolveRequestCache Used by the Output Cache module to short-circuit the processing of
requests that have been cached.

AcquireRequestState Signals that per-request state should be obtained.

PreRequestHandler Signals that the request handler is about to execute. This is the last
Execute event you can participate in before the HTTP handler for this request

is called.

234

Chapter 8

12_595636 ch08.qxd 5/10/05 9:56 PM Page 234

Table 8-5 shows the events that are raised after an application has returned. The events are listed in the
order in which they occur.

Table 8-5: HTTP Module Events (after application has returned)

Event Description

PostRequest Signals that the HTTP handler has completed processing the request.
HandlerExecute

ReleaseRequestState Signals that the request state should be stored because the application
is finished with the request.

UpdateRequestCache Signals that code processing is complete and the file is ready to be
added to the ASP.NET cache.

EndRequest Signals that all processing has finished for the request. This is the last
event called when the application ends.

In addition, there are three per-request events that can be raised in a nondeterministic order. They
appear in Table 8-6.

Table 8-6: HTTP Module Events (nondeterministic)

Event Description

PreSendRequest Signals that HTTP headers are about to be sent to the client. This pro-
Headers vides an opportunity to add, remove, or modify the headers before

they are sent.

PreSendRequest Signals that content is about to be sent to the client. This provides an
Content opportunity to modify the content before it is sent.

Error Signals an unhandled exception.

After the request has been pushed through the HTTP modules configured for your application, the
HTTP handler responsible for the requested file’s extension (.ASPX) handles the processing of that file.
If you are familiar with ASP.NET development, you’ll be familiar with the handler for an ASPX page,
that is, System.Web.UI.Page. The HTTP handler then handles the life cycle of the page-level request rais-
ing events such as Page_Init, Page_Load, and so on.

DotNetNuke HTTP Modules
As stated earlier, DotNetNuke (like ASP.NET) comes with a number of HTTP modules. These modules
allow developers to customize the HTTP Pipeline to provide additional functionality on each request.
This section investigates each HTTP module provided, and discusses its purpose and possibilities for
extension.

235

Core DotNetNuke APIs

12_595636 ch08.qxd 5/10/05 9:56 PM Page 235

URL Rewriter
The URL rewriter is an HTTP module that provides a mechanism for mapping virtual resource names to
physical resource names at runtime. In other words, provide a URL that is friendly. The term “friendly”
has two aspects; we solved one with the default implementation, but not the other. Instead we provided
an extensible architecture to allow you to implement the second at a possible cost of performance.

The first aspect of the term friendly is to make the URL search engine friendly. The main requirement
of the enhancement is most search engines ignore URL parameters. Since DotNetNuke relies on URL
parameters to navigate to portal tabs, the current application is not search engine friendly. In order to
effectively index your site we need a parameter-less mechanism for constructing URLs that search
engines will process.

If you browse to a DotNetNuke site that is version 3.0 or greater, you may notice different URLs from
earlier versions. Traditionally, a DotNetNuke URL may look something like the following:

http://www.dotnetnuke.com/default.aspx?tabid=622

With friendly URLs enabled you might see the preceding URL like so:

http://www.dotnetnuke.com/RoadMap/Friendly URLs/tabid/622/default.aspx

Earlier, we explored the HTTP Pipeline and the events that are raised during the processing of a request.
Our URL rewriter is invoked during this process and can optionally subscribe to application-wide
events. The particular event we are interested in for this module is the BeginRequest event. This event
allows us to modify the URL before the Page HTTP handler is invoked and make it believe the URL
requested was that of the old non-friendly format.

The transformation process occurs through the use of regular expressions defined in SiteUrls.config in
the root of your DotNetNuke installation. This file contains a number of expressions to LookFor and a
corresponding URL to SendTo. Listing 8-13 shows the default SiteUrls.config.

Listing 8-13: SiteUrls.config

<?xml version=”1.0” encoding=”utf-8” ?>
<RewriterConfig>
<Rules>

<RewriterRule>
<LookFor>.*/TabId/(\d+)(.*)/Logoff.aspx</LookFor>
<SendTo>~/Admin/Security/Logoff.aspx?tabid=$1</SendTo>

</RewriterRule>
<RewriterRule>

<LookFor>.*/TabId/(\d+)(.*)/rss.aspx</LookFor>
<SendTo>~/rss.aspx?TabId=$1</SendTo>

</RewriterRule>
<RewriterRule>

<LookFor>.*/TabId/(\d+)(.*)</LookFor>
<SendTo>~/Default.aspx?TabId=$1</SendTo>

</RewriterRule>
</Rules>
</RewriterConfig>

236

Chapter 8

12_595636 ch08.qxd 5/10/05 9:56 PM Page 236

The rules defined in this configuration file cover the default login and logoff page. You could potentially
add any number of additional rules, and even hardcode some extra rules in there. For example, if you
wanted to hardcode a link such as http://www.dotnetnuke.com/FriendlyUrl.aspx and have it
map to another URL elsewhere, your entry might look like Listing 8-14.

Listing 8-14: SiteUrls.config with Modified Rule

<?xml version=”1.0” encoding=”utf-8” ?>
<RewriterConfig>
<Rules>

<RewriterRule>
<LookFor>.*/FriendlyUrl.aspx</LookFor>
<SendTo>~/default.aspx?tabid=622</SendTo>

</RewriterRule>
<RewriterRule>

<LookFor>.*/TabId/(\d+)(.*)/Logoff.aspx</LookFor>
<SendTo>~/Admin/Security/Logoff.aspx?tabid=$1</SendTo>

</RewriterRule>
<RewriterRule>

<LookFor>.*/TabId/(\d+)(.*)/rss.aspx</LookFor>
<SendTo>~/rss.aspx?TabId=$1</SendTo>

</RewriterRule>
<RewriterRule>

<LookFor>.*/TabId/(\d+)(.*)</LookFor>
<SendTo>~/Default.aspx?TabId=$1</SendTo>

</RewriterRule>
</Rules>
</RewriterConfig>

The preceding URL scheme is an excellent implementation for your own applications as well, particu-
larly those with fixed pages. Unfortunately DotNetNuke has potentially any number of pages, so we
had to add some functionality that would transform any number of query string parameters.

Let’s now examine the default scheme for URL rewriting. You can see from the friendly URL shown ear-
lier (http://www.dotnetnuke.com/RoadMap/Friendly URLs/tabid/622/default.aspx) that we
have achieved our requirement, that is, the URL would have no parameters. Examining the URL, we can
work something out about the default scheme.

❑ http://www.dotnetnuke.com/: The site URL.

❑ RoadMap/Friendly URLs/: The breadcrumb path back to the home page.

❑ tabid/622: The query string from the original URL transformed (?tabid=622).

The advantage of this scheme is that it requires no database lookups for the transformation, just raw reg-
ular expression processing that is typically quite fast.

Earlier in this chapter, we mentioned that there were two aspects of friendly URLs; so far we have only
discussed the first (Search Engine Friendly). The second aspect can sometimes impact performance and
is known as human friendly URLs.

237

Core DotNetNuke APIs

12_595636 ch08.qxd 5/10/05 9:56 PM Page 237

A URL that is human friendly is easily remembered by the human or able to be worked out. For exam-
ple, if I had a login to DotNetNuke.com and I wanted to visit the profile page without navigating to it,
I might expect the URL to be

http://www.dotnetnuke.com/profile/smcculloch.aspx

The preceding URL could easily be remembered, but would require additional processing on the request
for two reasons:

❑ The URL contains no TabID. We would have to lookup the TabID for the profile page for that
portal.

❑ The URL contains no UserID. We would have to perform a lookup on smcculloch to find the
corresponding UserID.

For these reasons, this approach was not chosen but is still possible.

So far, we’ve only explained how incoming requests are interpreted but not how outgoing links are
transformed into the friendly URL scheme. A number of options were explored on how to transform the
outgoing links, but the best option was to implement a provider-based component that would transform
a given link into the chosen scheme. Figure 8-2 shows the URL rewriter architecture.

Figure 8-2

Luckily, DotNetNuke had used two shortcut methods already for building links within the application
(NavigateUrl and EditUrl). It was relatively simple to place a call to the provider from each of these
methods, effectively upgrading the site to the new URL format instantly.

This approach also tightly coupled the HTTP module and the provider together. For this reason you can
find them in the same assembly (DotNetNuke.HttpModules.UrlRewrite.dll).

You can see from the architecture that it is quite plausible for you to write your own URL rewriting
scheme. If it was more important for your site to have human friendly URLs, you could write a scheme
by writing a new provider to format outgoing URLs, and a new HTTP module to interpret the incoming
requests.

Request

Portal Engine

FriendlyUrl
Provider

UrlRewriter
HttpModule

238

Chapter 8

12_595636 ch08.qxd 5/10/05 9:56 PM Page 238

Writing a new provider involves providing new implementations of the methods in the base class of the
FriendlyUrlProvider. Listing 8-15 shows these methods.

Listing 8-15: Friendly URL Provider Methods

Public MustOverride Function FriendlyUrl(ByVal objtab as TabInfo, ByVal
path As String) As String

Public MustOverride Function FriendlyUrl(ByVal objtab as TabInfo, ByVal
path As String, ByVal pageName As String) As String

Public MustOverride Function FriendlyUrl(ByVal objtab as TabInfo, ByVal
path As String, ByVal pageName As String, ByVal settings As PortalSettings) As
String

Public MustOverride Function FriendlyUrl(ByVal objtab as TabInfo, ByVal
path As String, ByVal pageName As String, ByVal portalAlias As String) As String

As you can see, there are only four methods to implement so that you can write our URLs in your
desired format. The most important part will be to come up with a scheme and to find an efficient and
reliable way of interpretation by your HTTP module. Once you have written your provider, you can add
an additional entry in the providers section of web.config as shown in Listing 8-16. Make sure to set the
defaultProvider attribute.

Listing 8-16: Friendly URL Provider Configuration

<friendlyUrl defaultProvider=”CustomFriendlyUrl”>
<providers>

<clear />
<add name=”DNNFriendlyUrl”

type=”DotNetNuke.Services.Url.FriendlyUrl.DNNFriendlyUrlProvider,
DotNetNuke.HttpModules.UrlRewrite” />

<add name=”CustomFriendlyUrl”
type=”CompanyName.FriendlyUrlProvider,

CompanyName.FriendlyUrlProvider” />
</providers>

</friendlyUrl>

Exception Management
The exception management HTTP module subscribes to the error event raised by the HttpApplication
object. Any time an error occurs within DotNetNuke, the error event is called. During the processing of this
event the last error to have occurred is captured and sent to the exception logging class. This class then calls
the Logging Provider that handles the writing of that exception to a data store (the default is XML).

Users Online
Users Online was implemented during version 2 of DotNetNuke. It allows other modules to interrogate
the applications’ data store for information regarding who is online, both expressed as registered users
or anonymous users. Previously it had been a custom add-on and was session based. Before the addition
of the functionality to the core (like many add-ons incorporated into the core), research was undertaken
to investigate the best way to not only handle registered users, but anonymous users.

The module subscribes to the AuthorizeRequest event. This event is the first chance an HTTP module
has to examine details about the user performing the request. The HTTP module examines the request

239

Core DotNetNuke APIs

12_595636 ch08.qxd 5/10/05 9:56 PM Page 239

and determines whether the user is anonymous or authenticated, then proceeds to store the request in
cache. Anonymous users are also given a temporary cookie so they are not counted twice in the future.
A scheduled job from the Scheduler executes every minute on a background thread pulling the relevant
details out of cache and updating them in the database; it will also clear up any old records. The records
are stored within two tables, AnonymousUsers and UsersOnline.

This HTTP module is a good module to disable (comment out of config) if you do not need this informa-
tion within your portal. Alternatively you can just disable it in Host Settings.

DNNMembership
The DNNMembership HTTP module performs tasks around the security of a user. It stores role informa-
tion about a user in an HTTP cookie to save requesting the same information again and performs security
checks for users switching portals.

There is no real need to extend this module because it is critical to DotNetNuke’s operation.

Personalization
The personalization HTTP module is very similar to the Microsoft-provided Profile HTTP module, and
in fact, was based on the same concept, just integrated much earlier. It loads a user’s personalized infor-
mation into a serialized XML object at the beginning of the request, and saves it at the end of the request.

If you are interested in storing personalized information about a user, see the personalization classes
under /Components/Personalization/.

Module Interfaces
Modules represent a discrete set of functionality that can extend the portal framework. In past versions
of DotNetNuke, module interactions with the portal were primarily limited to making method calls into
the core portal APIs. While this one-way interaction provides some ability to utilize portal services and
methods within the module, it limits the ability of the portal to provide more advanced services.

In order to provide two-way interactions with modules, the portal needs to have a mechanism to make
method calls into the module. There are several distinct mechanisms for allowing a program to call
methods on an arbitrary set of code, where the module code is unknown at the time the portal is being
developed. Three of these “calling” mechanisms are used within DotNetNuke:

❑ Inheritance

❑ Delegates

❑ Interfaces

As discussed previously, every module inherits from the PortalModuleBase class (located in the compo-
nents/module directory). This base class provides a common set of methods and properties that can be
used by the module as well as the portal to control the behavior of each module instance. Because the
module must inherit from this class, the portal has a set of known methods that it can use to control the
module. The portal could extend the base class to add additional methods to handle new services. One
downside to this approach is that there is not an easy mechanism for determining whether a subclass

240

Chapter 8

12_595636 ch08.qxd 5/10/05 9:56 PM Page 240

implements custom logic for a specific method or property. Because of this restriction, inheritance is gen-
erally limited to providing services that are needed or required for every subclass.

A second method for interacting with the modules involves the use of delegates. A delegate is essentially
a pointer to a method that has a specific set of parameters and return type. Delegates are useful when
a service can be implemented with a single method call and are the underlying mechanism behind
VB.NET’s event handling. DotNetNuke uses delegates to implement callback methods for the Module
Action menu action event. Although delegates are very useful in some situations, they are more difficult
to implement and understand than alternative methods.

The third calling mechanism used by DotNetNuke is the use of interfaces. An interface defines a set of
methods, events, and properties without providing any implementation details for these elements. Any
class that implements an interface is then responsible for providing the specific logic for each method,
event, and property defined in the interface. Interfaces are especially useful for defining optional ser-
vices that a module may implement. The portal is able to detect if a class implements a specific interface
and is then able to call any of the methods, events, or properties defined in the interface.

DotNetNuke 3.0 significantly extends its use of module interfaces. This section examines the six main
interfaces that are intended for use by modules:

❑ IActionable

❑ IPortable

❑ IUpgradable

❑ IModuleCommunicator

❑ IModuleListener

❑ ISearchable

IActionable
Every module has a menu that contains several possible action items for activities like editing module
settings, module movement, and viewing help. These menu items are called Module Actions. The mod-
ule menu can be extended with your own custom actions. When your module inherits from the
PortalModuleBase class, it receives a default set of actions. These actions are defined by the portal to
handle common editing functions. Your module can extend these actions by implementing the
IActionable interface.

Interface
As shown in Listing 8-17, the IActionable interface consists of a single method that returns a collection of
module actions. The ModuleActions property is used when DotNetNuke renders the module.

Listing 8-17: IActionable Interface Definition

Namespace DotNetNuke.Entities.Modules
Public Interface IActionable

ReadOnly Property ModuleActions() As Actions.ModuleActionCollection
End Interface

End Namespace

241

Core DotNetNuke APIs

12_595636 ch08.qxd 5/10/05 9:56 PM Page 241

Listing 8-18 shows an example usage as implemented in the Announcements module. Let’s break this
down. The first two lines tell the compiler that this method implements the ModuleAction method of the
IActionable interface. This is a read-only method and therefore we only need to provide a getter func-
tion. The first step is to create a new collection to hold our custom actions. Then we use the collection’s
Add method to create a new action item in our collection. Finally we return our new collection.

Listing 8-18: IActionable.ModuleActions Example

Public ReadOnly Property ModuleActions() As ModuleActionCollection _
Implements IActionable.ModuleActions
Get

Dim Actions As New ModuleActionCollection

Actions.Add(GetNextActionID, _
Localization.GetString(ModuleActionType.AddContent, _

LocalResourceFile), _
ModuleActionType.AddContent, _
“”, _
“”, _
EditUrl(), _
False, _
Security.SecurityAccessLevel.Edit, _
True, _
False)

Return Actions
End Get

End Property

This is a simple example that demonstrates the basic steps to follow for your own custom module
menus. DotNetNuke provides extensive control over each module action.

ModuleAction API
To take full advantage of the power provided by module actions and the IActionable interface, we need
to examine the classes, properties, and methods that make up the ModuleAction API.

Table 8-7 lists the classes that comprise the ModuleAction API.

Table 8-7: Module Action Classes

Class Description

ModuleAction A module action is used to define a specific function for a given mod-
ule. Each module can define one or more actions that the portal will
present to the user. Each module container can define the skin object
used to render the module actions.

ModuleActionType The ModuleActionType class defines a set of constants used for distin-
guishing common action types.

ModuleActionCollection This is a collection of Module Actions.

242

Chapter 8

12_595636 ch08.qxd 5/10/05 9:56 PM Page 242

ModuleActionEvent This class is used for holding callback information when a module
Listener registers for Action events.

ActionEventArgs The ActionEventArgs class is used for passing data during the click
event that is fired when a module action is selected by the user.

ActionEventHandler The ActionEventHandler is a delegate that defines the method signa-
ture required for responding to the Action event.

ActionBase The ActionBase class is used for creating ModuleAction skin objects.
The core framework includes three different implementations: SolPart
Actions.ascx, DropDownActions.ascx, and LinkActions.ascx.

The ModuleAction class is the heart of the API. Tables 8-8 and 8-9 show the properties and methods
available in the ModuleAction class. Each menu item in the Module Action menu is represented by a sin-
gle ModuleAction instance.

Table 8-8: ModuleAction Properties

Property Name Property Type Description

Actions ModuleAction The Module Action API supports hierarchical
Collection menu structures. Every skin object that inherits from

ActionBase may choose how to render the menu based
on the ability to support hierarchical items. For example
the default SolpartActions skin object supports sub-
menus, while the DropDownActions skin object only
supports a flat menu structure.

Id Integer Every module action for a given module instance must
contain a unique Id. The PortalModuleBase class defines
the GetNextActionId method, which can be used to gen-
erate unique module action IDs.

CommandName String The CommandName property is used to distinguish
which Module Action triggered an action event. DotNet-
Nuke includes 19 standard ModuleActionTypes that
provide access to standard functionality. Custom mod-
ule actions can use their own string to identify com-
mands recognized by the module.

Command String CommandArguments are used to provide additional
Argument information during action event processing. For example,

the DotNetNuke core uses the CommandArgument to
pass the ModuleID for common commands like Delete-
Module.Action.

Title String The Title property sets the text that is displayed in the
Module Action menu.

Table continued on following page

243

Core DotNetNuke APIs

12_595636 ch08.qxd 5/10/05 9:56 PM Page 243

Property Name Property Type Description

Icon String This is the name of the Icon file to use for the Module
Action item.

Url String When set, the URL property allows a menu item to redi-
rect the user to another web page.

ClientScript String The Javascript that will be run during the menuClick
event in the browser. If the ClientScript property is pre-
sent then it is called prior to the postback occurring. If the
ClientScript returns false, then the postback is canceled.

UseAction Boolean The UseActionEvent causes the portal to raise an
Event ActionEvent on the server and notify any registered

event listeners. If UseActionEvent is false, then the por-
tal will handle the event, but will not raise the event
back to any event listeners. The following Command-
Names will prevent the ActionEvent from firing:
ModuleHelp, OnlineHelp, ModuleSettings, DeleteModule,
PrintModule, ClearCache, MovePane, MoveTop, MoveUp,
MoveDown and MoveBottom.

Secure SecurityAccess The Secure property determines the required
Level security level of the user. If the current user does not

have the necessary permissions, then the Module Action
will not be displayed.

Visible Boolean If the visible property is set to false, then the Module
Action will not be displayed. This property allows you
to control the visibility of a Module Action based on cus-
tom business logic.

Newwindow Boolean The Newwindow property will force an action to open
the associated URL in a new window. This property is
not used if UseActionEvent is True or if the following
CommandNames are used: ModuleHelp, OnlineHelp,
ModuleSettings, PrintModule.

Table 8-9: ModuleAction Methods

Method Name Return Type Description

HasChildren Boolean HasChildren returns true if the ModuleAction.Actions
property has any items (Actions.Count > 0).

DotNetNuke includes several standard module actions that are provided by the PortalModuleBase class
or that are used by several of the core modules. These ModuleActionTypes are shown in Listing 8-19.
ModuleActionTypes can also be used to access localized strings for the ModuleAction.Title property.
This helps promote a consistent user interface for both core and third-party modules.

244

Chapter 8

12_595636 ch08.qxd 5/10/05 9:56 PM Page 244

Listing 8-19: ModuleActionTypes

Public Class ModuleActionType
Public Const AddContent As String = “AddContent.Action”
Public Const EditContent As String = “EditContent.Action”
Public Const ContentOptions As String = “ContentOptions.Action”
Public Const SyndicateModule As String = “SyndicateModule.Action”
Public Const ImportModule As String = “ImportModule.Action”
Public Const ExportModule As String = “ExportModule.Action”
Public Const OnlineHelp As String = “OnlineHelp.Action”
Public Const ModuleHelp As String = “ModuleHelp.Action”
Public Const PrintModule As String = “PrintModule.Action”
Public Const ModuleSettings As String = “ModuleSettings.Action”
Public Const DeleteModule As String = “DeleteModule.Action”
Public Const ClearCache As String = “ClearCache.Action”
Public Const MoveTop As String = “MoveTop.Action”
Public Const MoveUp As String = “MoveUp.Action”
Public Const MoveDown As String = “MoveDown.Action”
Public Const MoveBottom As String = “MoveBottom.Action”
Public Const MovePane As String = “MovePane.Action”
Public Const MoveRoot As String = “MoveRoot.Action”

End Class

DotNetNuke provides standard behavior for the following ModuleActionTypes: ModuleHelp,
OnlineHelp, ModuleSettings, DeleteModule, PrintModule, ClearCache, MovePane, MoveTop, MoveUp,
MoveDown, and MoveBottom. All ModuleActionTypes in this subset will ignore the UseActionEvent
and Newwindow properties. The ModuleActionTypes can be further subdivided into three groups:

❑ Basic Redirection: The following ModuleActionTypes will perform a simple redirection and
cause the user to navigate to the URL identified in the URL property: ModuleHelp, OnlineHelp,
ModuleSettings, and PrintModule.

❑ Module Movement: The following ModuleActionTypes will change the order or location of
modules on the current page: MovePane, MoveTop, MoveUp, MoveDown, and MoveBottom.

❑ Custom Logic: The following ModuleActionTypes have custom business logic that will use core
portal APIs to perform standard module-related actions: DeleteModule and ClearCache.

DotNetNuke uses a custom collection class when working with Module Actions. The ModuleAction
Collection inherits from the .Net System.Collections.CollectionBase class and provides a strongly typed
collection class. Using a strongly typed collection minimizes the possibility of typecasting errors that can
occur when using generic collection classes like the ArrayList.

Most module developers will only need to worry about creating the ModuleActionCollection in order to
implement the IActionable interface. Listing 8-20 shows the two primary methods used for adding
ModuleActions to the collection. These methods simplify adding ModuleActions by wrapping the
ModuleAction constructor method calls.

245

Core DotNetNuke APIs

12_595636 ch08.qxd 5/10/05 9:56 PM Page 245

Listing 8-20: Key ModuleActionCollection Methods

Public Function Add(ByVal ID As Integer, _
ByVal Title As String, _
ByVal CmdName As String, _
Optional ByVal CmdArg As String = “”, _
Optional ByVal Icon As String = “”, _
Optional ByVal Url As String = “”, _
Optional ByVal UseActionEvent As Boolean = False, _
Optional ByVal Secure As SecurityAccessLevel = SecurityAccessLevel.Anonymous, _
Optional ByVal Visible As Boolean = True, _
Optional ByVal NewWindow As Boolean = False) _
As ModuleAction

Public Function Add(ByVal ID As Integer, _
ByVal Title As String, _
ByVal CmdName As String, _
ByVal CmdArg As String, _
ByVal Icon As String, _
ByVal Url As String, _
ByVal ClientScript As String, _
ByVal UseActionEvent As Boolean, _
ByVal Secure As SecurityAccessLevel, _
ByVal Visible As Boolean, _
ByVal NewWindow As Boolean) _
As ModuleAction

The first method in Listing 8-20 uses optional parameters that are not supported by C#. This method is
likely to be deprecated in future versions in order to simplify support for C# modules and its use is not
recommended.

The ModuleAction framework makes it easy to handle simple URL redirection from a module action. Just
like the Delete and ClearCache actions provided by the DotNetNuke framework, your module may
require the use of custom logic to determine the appropriate action to take when the menu item is clicked.
To implement custom logic, the module developer needs to be able to respond to a Menu click event.

In the DotNetNuke architecture, the ModuleAction menu is a child of the module container. The module
is also a child of the container. This architecture allows the framework to easily change out the menu
implementation; however, it complicates communication between the menu and module. The menu never
has a direct reference to the module and the module does not have a direct reference to the menu. This is a
classic example of the Mediator design pattern. This pattern is designed to allow two classes without
direct references to communicate. Figure 8-3 shows the steps involved to implement this pattern.

Let’s examine the steps involved in making this work. During this discussion you will also discover
ways you can to extend the framework.

246

Chapter 8

12_595636 ch08.qxd 5/10/05 9:56 PM Page 246

Figure 8-3

Step 1: Register the Event Handler
The first step to implementing the Mediator pattern is to provide a mechanism for the module to register
with the portal. The portal will use this information later when it needs to notify the module that a menu
item was selected. Handling the click event is strictly optional. Your module may choose to use standard
MenuActions, in which case you can skip this step. Because the module does not contain a direct refer-
ence to the page on which it is instantiated, you need to provide a registration mechanism.

The Skin class, which acts as our mediator, contains the RegisterModuleActionEvent method, which
allows a module to notify the framework of the event handler for the action event (see Listing 8-21).
This registration should occur in the module’s Page_Load event to ensure that registration occurs before
the event could be fired in the Skin class. The code in Listing 8-21 is taken from the HTML module and
provides a working example of module-based event registration for the ModuleAction event. While we
could have used another interface to define a known method to handle the event, the registration mech-
anism turns out to be a much more flexible design when implementing a single method.

Listing 8-21: Registering an Event Handler

‘--
‘- Menu Action Handler Registration -
‘--
‘This finds a reference to the containing skin
Dim ParentSkin As UI.Skins.Skin = UI.Skins.Skin.GetParentSkin(Me)

‘We should always have a ParentSkin, but need to make sure
If Not ParentSkin Is Nothing Then

‘Register our EventHandler as a listener on the ParentSkin so that it may
‘tell us when a menu has been clicked.
ParentSkin.RegisterModuleActionEvent(Me.ModuleId, AddressOf ModuleAction_Click)

End If
‘--

Skin

4

ModuleAction
Skin Object Module

3

2 1

247

Core DotNetNuke APIs

12_595636 ch08.qxd 5/10/05 9:56 PM Page 247

Listing 8-22 shows the ModuleAction_Click event handler code from the HTML module.

Listing 8-22: Handling the Event

Public Sub ModuleAction_Click(ByVal sender As Object, _
ByVal e As Entities.Modules.Actions.ActionEventArgs)

‘We could get much fancier here by declaring each ModuleAction with a
‘Command and then using a Select Case statement to handle the various
‘commands.
If e.Action.Url.Length > 0 Then

Response.Redirect(e.Action.Url, True)
End If

End Sub

The DotNetNuke framework uses a delegate (see Listing 8-23) to define the method signature for the
event handler. The RegisterModuleActionEvent requires the address of a method with the same signa-
ture as the ActionEventHandler delegate.

Listing 8-23: ActionEventHandler Delegate

Public Delegate Sub ActionEventHandler(ByVal sender As Object, _
ByVal e As ActionEventArgs)

Step 2: Display the Menu
Now that we have a way for the skin (the mediator class) to communicate with the module, we need a
mechanism to allow the menu to communicate with the skin as well. This portion of the communication
chain is much easier to code. Handling the actual click event and passing it to the skinning class is the
responsibility of the ModuleAction rendering code.

Like much of DotNetNuke, the ModuleAction framework supports the use of custom extensions. In this
case, we rely on skin objects to handle rendering the module actions. Each ModuleAction skin object
inherits from the DotNetNuke.UI.Containers.ActionBase class. The skin class retrieves the module
action collection from the module by calling the IActionable.ModuleActions property and passes this
collection to the ModuleAction skin object for rendering. The ActionBase class includes the code neces-
sary to merge the standard module actions with the collection provided by the Skin class.

Each skin object includes code in the pre-render event to convert the collection of ModuleActions into an
appropriate format for display using an associated server control. In the case of SolPartActions.ascx, the
server control is a menu control that is able to fully support all of the features of ModuleActions includ-
ing submenus and icons. Other skin objects like the DropDownActions.ascx may only support a subset
of the module action features (see Table 8-10).

248

Chapter 8

12_595636 ch08.qxd 5/10/05 9:56 PM Page 248

Table 8-10: ModuleAction Skin Objects

Action Skin Object Menu Separator Icons Submenus Client-Side JavaScript

Actions or SolPartActions Yes Yes Yes Yes

DropDownActions Yes No No Yes

LinkActions No No No No

Step 3: Notify the Portal of a Menu Item Selection
Each skin object handles the click event of the associated server control. This event, as shown in Listing
8-24, calls the ProcessAction method, which is inherited from the ActionBase class. The ProcessAction
method is then responsible for handling the event as indicated by the ModuleAction properties. If you
create your own ModuleAction skin object, you should follow this same pattern.

Listing 8-24: Click Event Handler

Private Sub ctlActions_MenuClick(ByVal ID As String) Handles ctlActions.MenuClick
Try

ProcessAction(ID)
Catch exc As Exception ‘Module failed to load

ProcessModuleLoadException(Me, exc)
End Try

End Sub

Step 4: Notify the Module That a Custom ModuleAction Was Clicked
If the UseActionEvent is set to True, then the ProcessAction method (see Listing 8-25) will call the
OnAction method to handle actually raising the event (see Listing 8-26). This might seem like an extra
method call when ProcessAction could just raise the event on its own. The purpose of the OnAction
method is to provide an opportunity for subclasses to override the default event handling behavior.
While not strictly necessary, it is a standard pattern in .NET and is a good example to follow when
developing your own event handling code in your applications.

Listing 8-25: ProcessAction Method

Public Sub ProcessAction(ByVal ActionID As String)
If IsNumeric(ActionID) Then

Dim action As ModuleAction = GetAction(Convert.ToInt32(ActionID))
Select Case action.CommandName

Case ModuleActionType.ModuleHelp
DoAction(action)

Case ModuleActionType.OnlineHelp
DoAction(action)

Case ModuleActionType.ModuleSettings
DoAction(action)

Case ModuleActionType.DeleteModule
Delete(action)

(continued)

249

Core DotNetNuke APIs

12_595636 ch08.qxd 5/10/05 9:56 PM Page 249

Listing 8-25: (continued)

Case ModuleActionType.PrintModule
DoAction(action)

Case ModuleActionType.ClearCache
ClearCache(action)

Case ModuleActionType.MovePane
MoveToPane(action)

Case ModuleActionType.MoveTop, _
ModuleActionType.MoveUp, _
ModuleActionType.MoveDown, _
ModuleActionType.MoveBottom

MoveUpDown(action)
Case Else

‘ custom action
If action.Url.Length > 0 And action.UseActionEvent = False Then

DoAction(action)
Else

ModuleConfiguration))
End If

End Select
End If

End Sub

Listing 8-26: OnAction Method

Protected Overridable Sub OnAction(ByVal e As ActionEventArgs)
RaiseEvent Action(Me, e)

End Sub

Because the skin maintains a reference to the ModuleAction skin object, the Skin class is able to handle
the Action event raised by the skin object. As shown in Listing 8-27, the Skin class will iterate through
the ActionEventListeners to find the associated module event delegate. Once a listener is found, the code
invokes the event, which notifies the module that the event has occurred.

Listing 8-27: Skin Class Handles the ActionEvent

Public Sub ModuleAction_Click(ByVal sender As Object, ByVal e As ActionEventArgs)
‘Search through the listeners
Dim Listener As ModuleActionEventListener
For Each Listener In ActionEventListeners

‘If the associated module has registered a listener
If e.ModuleConfiguration.ModuleID = Listener.ModuleID Then

‘Invoke the listener to handle the ModuleAction_Click event
Listener.ActionEvent.Invoke(sender, e)

End If
Next

End Sub

You are now ready take full advantage of the entire ModuleAction API to create custom menu items for your
own modules, handle the associated Action event when the menu item is clicked, and to create your own
custom ModuleAction skin objects.

250

Chapter 8

12_595636 ch08.qxd 5/10/05 9:56 PM Page 250

IPortable
DotNetNuke 3.0 provides the ability to import and export modules within the portal. Like many fea-
tures in DotNetNuke, this feature is implemented using a combination of core code and module-specific
logic. The IPortable interface defines the methods required to implement this feature on a module-by-
module basis (see Listing 8-28).

Listing 8-28: IPortable Interface Definition

Public Interface IPortable
Function ExportModule(ByVal ModuleID As Integer) As String

Sub ImportModule(ByVal ModuleID As Integer, _
ByVal Content As String, _
ByVal Version As String, _
ByVal UserID As Integer)

End Interface

This interface provides a much needed feature to DotNetNuke and is a pretty straightforward interface
to implement. To fully support importing and exporting content, you need to implement the interface in
two places within your module.

As modules are being loaded by the portal for rendering a specific page, the module is checked to deter-
mine whether it implements the IPortable interface. This check is based on the current module control
that is being loaded (remember each module can consist of many user controls). Typically, you will want
the portal to add the import and export Module Actions to your primary module control. If the control
implements the IPortable interface, DotNetNuke will automatically add the Import Content and Export
Content menu items to your Module Action menu (see Figure 8-4). You do not need to supply any logic
for the interface methods since we are only using it as a marker interface. See Listing 8-29 for a sample
implementation of the ExportModule method. The ImportModule method would contain the same stub
implementation.

Figure 8-4

A marker interface is used to indicate that a class implements or requires a certain service. A true
marker interface does not include any properties or methods. In this case we chose to re-use an existing
interface rather than create a new one.

Listing 8-29: ExportModule Stub

Public Function ExportModule(ByVal ModuleID As Integer) As String _
Implements Entities.Modules.IPortable.ExportModule

‘Included as a stub only so that the core knows this module
‘ Implements Entities.Modules.IPortable

End Function

251

Core DotNetNuke APIs

12_595636 ch08.qxd 5/10/05 9:56 PM Page 251

Each module should include a controller class that is identified in the BusinessControllerClass property
of the portal’s ModuleInfo class. This class is identified in the module manifest file discussed in Chapter
14. The controller class is where we will implement many of the interfaces available to modules.

Implementing the IPortable interface requires implementing logic for the ExportModule and ImportModule
methods shown in Listing 8-30 and Listing 8-31, respectively. The complexity of the data model for your
module will determine the difficulty of implementing these methods. Let’s take a look at a simple case as
implemented by the HTMLText module.

The ExportModule method is used to serialize the content of the module to an xml string. DotNetNuke
will save the serialized string along with the module’s FriendlyName and Version. The xml file is saved
into the portal directory.

Listing 8-30: ExportModule Stub

Public Function ExportModule(ByVal ModuleID As Integer) As String _
Implements Entities.Modules.IPortable.ExportModule

Dim strXML As String = “”

Dim objHtmlText As HtmlTextInfo = GetHtmlText(ModuleID)
If Not objHtmlText Is Nothing Then

strXML += “<htmltext>”
strXML += “<desktophtml>{0}</desktophtml>”
strXML += “<desktopsummary>{1}</desktopsummary>”
strXML += “</htmltext>”

String.Format(strXML, _
XMLEncode(objHtmlText.DeskTopHTML), _
XMLEncode(objHtmlText.DesktopSummary))

End If

Return strXML

End Function

The ImportModule method (see Listing 8-31) reverses the process by deserializing the xml string created
by the ExportModule method and replacing the content of the specified module. The portal will pass the
version information stored during the export process along with the serialized xml string.

Listing 8-31: ImportModule Stub

Public Sub ImportModule(ByVal ModuleID As Integer, _
ByVal Content As String, _
ByVal Version As String, _
ByVal UserId As Integer) _

Implements Entities.Modules.IPortable.ImportModule

Dim xmlHtmlText As XmlNode = GetContent(Content, “htmltext”)

Dim objText As HtmlTextInfo = New HtmlTextInfo

252

Chapter 8

12_595636 ch08.qxd 5/10/05 9:56 PM Page 252

objText.ModuleId = ModuleID
objText.DeskTopHTML = xmlHtmlText.SelectSingleNode(“desktophtml”).InnerText
objText.DesktopSummary = xmlHtmlText.SelectSingleNode(“desktopsummary”).InnerText
objText.CreatedByUser = UserId
AddHtmlText(objText)

End Sub

The IPortable interface is a straightforward interface to implement but provides much needed function-
ality to the DotNetNuke framework. This interface is at the heart of the Templating capability for
DotNetNuke and therefore is definitely an interface that all modules should implement.

IUpgradable
One of DotNetNuke’s greatest features is the ability to easily upgrade from one version to the next. The
heart of this capability is the creation of script files that can be run sequentially to modify the database
schema and migrate any existing data to the new version’s schema. In later versions DotNetNuke added
a mechanism for also running custom logic during the upgrade process. Unfortunately, this mechanism
was not provided for modules. Therefore, third-party modules were forced to create their own mecha-
nism for handling custom upgrade logic.

This is finally fixed in DotNetNuke 3.0. The IUpgradeable interface (see Listing 8-32) provides a standard
upgrade capability for modules, and uses the same logic as used in the core framework. The interface
includes a single method, UpgradeModule, which allows the module to execute custom business logic
depending on the current version of the module being installed.

Listing 8-32: IUpgradeable Interface

Public Interface IUpgradeable
Function UpgradeModule(ByVal Version As String) As String

End Interface

The UpgradeModule method is called once for each script version included with the module. If an ear-
lier version of the module is already installed, then this method is only called for script versions that are
later than the version of the currently installed module.

Inter-Module Communication
DotNetNuke includes the ability for modules to communicate with each other through the Inter-Module
Communication (IMC) framework. Originally the IMC framework allowed a module to pass simple
strings to another module on the same page. This was enhanced in DotNetNuke 2.0 to allow modules to
pass objects rather than simple strings. Additionally, other properties were added that allowed a module
to identify the Sender, the Target, and the Type of message. Let’s take a look at the two main interfaces
that provide this functionality to your module.

IModuleCommunicator
The IModuleCommunicator interface defines a single event, ModuleCommunication, for your module
to implement (see Listing 8-33).

253

Core DotNetNuke APIs

12_595636 ch08.qxd 5/10/05 9:56 PM Page 253

Listing 8-33: IModuleCommunicator Interface

Public Interface IModuleCommunicator
Event ModuleCommunication As ModuleCommunicationEventHandler

End Interface

To communicate with another module, first implement the IModuleCommunicator interface in your
module. You should have an event declaration in your module as shown in Listing 8-34.

Listing 8-34: ModuleCommunication Event Implementation

Public Event ModuleCommunication(ByVal sender As Object, _
ByVal e As ModuleCommunicationEventArgs) _
Implements IModuleCommunicator.ModuleCommunication

IModuleListener
Whereas the IModuleCommunicator is used for sending messages, the IModuleListener interface (see
Listing 8-35) is used for receiving messages.

Listing 8-35: IModuleListener Interface

Public Interface IModuleListener
Sub OnModuleCommunication(ByVal s As Object, _

ByVal e As ModuleCommunicationEventArgs)
End Interface

This interface defines a single method, OnModuleCommunication, which is called when an
IModuleCommunicator on the same page raises the ModuleCommunication event. What you do in
response to this event notification is totally up to you.

DotNetNuke does not filter event messages. Any module that implements the IModuleListener interface
will be notified when the event is raised. It is the responsibility of the module to determine whether or
not it should take any action.

ISearchable
DotNetNuke 3.0 provides a robust search API for indexing and searching content in your portal. The
DotNetNuke search API is broken down into three distinct parts:

1. Core search engine

2. Search data store

3. Search indexer

Like the ModuleAction framework, the search framework also implements a Mediator pattern. When
combined with the Provider pattern, this framework provides lots of flexibility. In Figure 8-5 you can see
the relationship between these patterns and the three framework elements listed above.

254

Chapter 8

12_595636 ch08.qxd 5/10/05 9:56 PM Page 254

Figure 8-5

The core search engine provides a simple API for calling the IndexProvider and then storing the results
using a SearchDataStoreProvider. This API is currently intended for use by the core framework. Future
versions of the API will be extended to allow modules greater control over the indexing process.

DotNetNuke includes a default implementation of the SearchDataStoreProvider. The default implemen-
tation is meant to provide basic storage functionality, but could be replaced with a more robust search
engine. Like other providers, it is anticipated that third-party developers will implement providers for
many of the current search engines on the market.

The IndexingProvider provides an interface between the core search engine and each module.
DotNetNuke includes a default provider that indexes module content. This provider could be replaced
to provide document indexing, web indexing, or even indexing legacy application content stored in
another database. If you decide to replace the IndexingProvider, keep in mind that DotNetNuke only
allows for the use of a single provider of a given type. This means that if you want to index content from
multiple sources, you must implement this as a single provider. Future versions of the framework may
be enhanced to overcome this limitation.

When using the ModuleIndexer, you can incorporate a module’s content into the search engine data
store by implementing the ISearchable interface shown in Listing 8-36.

Listing 8-36: ISearchable Interface

Public Interface ISearchable
Function GetSearchItems(ByVal ModInfo As ModuleInfo) As SearchItemInfoCollection

End Interface

SearchEngine.vb

Core Search Engine

DataProvider

Search Data Store

SearchDataStoreProvider
[SearchDataStore]

Search Indexer

IndexingProvider
[ModuleIndexer]

Your Module
Implements ISearchable

255

Core DotNetNuke APIs

12_595636 ch08.qxd 5/10/05 9:56 PM Page 255

This interface is designed to allow almost any content to be indexed. By passing in a reference to the
module and returning a collection of SearchItems, the modules are free to map their content to each
SearchItem as they see fit. Listing 8-37 shows a sample implementation from the Announcements mod-
ule included with DotNetNuke.

Listing 8-37: Implementing the Interface

Public Function GetSearchItems(ByVal ModInfo As Entities.Modules.ModuleInfo) _
As Services.Search.SearchItemInfoCollection _
Implements Services.Search.ISearchable.GetSearchItems

Dim SearchItemCollection As New SearchItemInfoCollection

Dim Announcements As ArrayList = GetAnnouncements(ModInfo.ModuleID)

Dim objAnnouncement As Object
For Each objAnnouncement In Announcements

Dim SearchItem As SearchItemInfo
With CType(objAnnouncement, AnnouncementInfo)

Dim UserId As Integer
If IsNumeric(.CreatedByUser) Then

UserId = Integer.Parse(.CreatedByUser)
Else

UserId = 2
End If
SearchItem = New SearchItemInfo(ModInfo.ModuleTitle & “ - “ & .Title, _

ApplicationURL(ModInfo.TabID), _
.Description, _
UserId, _
.CreatedDate, _
ModInfo.ModuleID, _
“Anncmnt” & ModInfo.ModuleID.ToString & “-” & .ItemId, _
.Description)

SearchItemCollection.Add(SearchItem)
End With

Next

Return SearchItemCollection
End Function

You can see from the preceding code block we made a call to our Info class for our module, just as we
would when we bind to a control within our ascx file, but in this case the results are going to populate
the SearchItemInfo, which will populate the DNN index with data from our module.

The key to implementing the interface is figuring out how to map your content to a collection of
SearchItemInfo objects. Table 8-11 lists the properties of the SearchItemInfo class.

256

Chapter 8

12_595636 ch08.qxd 5/10/05 9:56 PM Page 256

Table 8-11: SearchItemInfo Properties

Property Description

SearchItemId This is an ID that is assigned by the search engine and is used when deleting
items from the data store.

Title The Title is a string that is used when displaying search results.

Description The Description is a summary of the content and is used when displaying
search results.

Author The content author.

PubDate This is a date that allows the search engine to determine the age of the content.

ModuleId The ID of the module whose content is being indexed.

SearchKey This is a unique key that can be used to identify each specific search item for
this module.

Content This is the specific content that will be searched. The default search data store
does not search on any words that are not in the content property.

GUID The GUID is another unique identifier that is used when syndicating content in
the portal.

ImageFileId The ImageFileID is an optional property that is used for identifying image files
that accompany a search item.

HitCount The HitCount is maintained by the search engine, and is used for identifying
the number of times that a search item is returned in a search.

Now that the index is populated with data, users of your portal will be able to search your module’s
information from a unified interface within DNN.

Summary
This chapter examined many of the core APIs that provide the true power behind DotNetNuke. By
leveraging common APIs, you can extend the portal in almost any direction. Replace core functions or
just add a custom module; the core APIs are what makes it all possible. Now that you know how to use
most of the core functions, the next several chapters examine how to create your own custom modules
to really take advantage of this power.

257

Core DotNetNuke APIs

12_595636 ch08.qxd 5/10/05 9:56 PM Page 257

12_595636 ch08.qxd 5/10/05 9:56 PM Page 258

Beginning Module
Development

This chapter begins the tour of module development in DotNetNuke. As you have read,
DotNetNuke provides a large amount of functionality right out of the box, but we also realize
that each one is going to have separate business requirements that DotNetNuke may not meet.
Fortunately, DotNetNuke provides developers and third-party independent software vendors
(ISVs) to extend the core framework by developing modules.

This chapter focuses on the architecture of one of those specific modules, namely, the Events mod-
ule. Chapters 10 through 12 cover various other aspects of module development. This chapter
starts out with setting up DotNetNuke to interface with your module development in Visual
Studio .NET 2003. In addition to configuring DotNetNuke to interface with the development,
it also discusses some issues when configuring your development environment.

Planning Your Module Project
Of course to succeed in any project, you should plan out that project before you start writing even
one line of code. You’re going to have to ask yourself or project team a few questions before begin-
ning your application development.

Can the development effort justify the savings that your application will provide?

Many factors may come into play: skills of in-house staff, costs associated with obtaining the skills,
and many others that you will have to account for. This leads into the next question — as with any
project, you may be confronted with the choice of developing in-house or outsourcing your project.

13_595636 ch09.qxd 5/10/05 10:02 PM Page 259

Can the module be purchased from a third party?

DotNetNuke has grown in popularity over the past couple of years, and the outlook is continued
growth. More independent software vendors are developing modules, so more than likely there is no
need to develop a module to accomplish a specific task; you can purchase it for very little cost. As of this
writing, more than 250 modules are currently available for sale, and many more are available as a free
download.

Is training required for developers?

Module development does require some additional skills. DotNetNuke module development is done
using the standard tools you would use to do any ASP.NET development, but knowing how to take
advantage of the interfaces available will require some insight into the inner workings of the framework.
Many resources are available for learning about DotNetNuke (in addition to this book you’re reading) if
you want to investigate further.

Should you hire an outside resource to do the development?

Training becomes less of an issue when you have your development done by an outside resource.
DotNetNuke’s popularity has increased at such a phenomenal rate that many solution providers are out
there specializing in module development.

What infrastructure issues are there?

How many developers are going to be working on the same code base? The more developers working
on the same code, the more there will be a need for source control. Scalability may also be something to
consider. In addition, if you have to access resources over the Web, you’ll need to read some of the appli-
cation settings configured at a host level in DotNetNuke.

Do we need to develop multiple data providers for the module?

What database are you going to use for the backend? DotNetNuke supports a Provider Model that
enables developers to abstract out the physical database interaction, allowing the actual DotNetNuke
core and module logic to be separate from the database logic. DotNetNuke supports SQL Server out of
the box, but a provider can be developed for basically any database backend. How many physical
databases you need to support will determine how many providers you will need to develop. Refer to
Chapter 7 on DotNetNuke architecture to learn more about abstraction and the Provider Model. Module
development closely mirrors the DotNetNuke architecture, and you should create a provider for each
platform you wish to support. If you’re going to distribute your module on various DotNetNuke installs
with different databases like SQL Server, Oracle, or MySQL, then you will need to develop a provider to
support those individual databases.

Do we need to support different versions of DotNetNuke?

DotNetNuke is becoming a mature product with several versions released. There have been many major
architectural changes going from version 1.x to 2.x and to 3.x. If your module needs to be available on
these various versions of DotNetNuke, you will need to determine this and manage the various code
bases to accommodate all the required versions.

260

Chapter 9

13_595636 ch09.qxd 5/10/05 10:02 PM Page 260

What resources are needed for ongoing support of the module?

This may not be as much of an issue for modules purchased or developed by an outside party. You may
be able to obtain adequate support from the vendor. If you developed in-house you’ll need to set aside
resources to provide ongoing support of the module.

Of course this list of sample questions is not all-inclusive. You’ll have to determine this for your own
application.

Ready Your Resources
Now that you have decided to begin module development, you will need to ready your development
environment. The entire source and project files are available in the DotNetNuke distribution file that
you can download from www.dotnetnuke.com. Just as you installed DotNetNuke on the production
server in Chapter 2, you will need to configure a development machine with the source code. Again,
this process is the same as it would be for configuring a production machine as in Chapter 2.

Ensure that your development environment is configured with Visual Studio .NET 2003, SQL Server
2000, or MSDE (or your specific data provider). In addition, if you are working with your source files in
a location other than the DotNetNuke default (c:/dotnetnuke), you may need to change the solution file
(dotnetnuke.sln) and the web information contained within the solution (dotnetnuke.webinfo). By mak-
ing the changes within these files to point to the location of the virtual directory for your environment,
you will ensure that you can open the solution correctly in Visual Studio .NET.

You may want to consider installing Visual Source Safe, or some other source control to ensure integrity of
your project source code. Installing Source Safe is beyond the scope of this book, but it is recommended
that you use some sort of source control to protect your development.

Another item to note is the publishing process from your development environment to your production
environment. Because DotNetNuke is ASP.NET-compiled into several assemblies, the most it takes to
publish to production is simply copying the development assemblies, user controls, the associated aspx,
and resource files to production. Ensure that you compile as release mode in Visual Studio .NET before
placing into production.

In many environments, an extra stage in the development process is added in by placing a sandbox or
testing server in between development and production. This testing server should mirror your produc-
tion environment as closely as possible; you should then install your module to the testing server and
test first. Once the business units review the functionality and ensure it is according to specifications, it
gets published out to the production servers.

Starting Development
We have covered some topics that will lead you to your development decisions, and it’s time to begin
developing your module. In this example, you are going to work with the Events module that is
included in the DotNetNuke distribution. This chapter and the next three chapters provide an in-depth
study of this module and the code to make it work.

261

Beginning Module Development

13_595636 ch09.qxd 5/10/05 10:02 PM Page 261

Configuring Your Visual Studio .NET Project
DotNetNuke is broken down into several solutions; the primary solution located in the root directory of
the distribution file contains all the projects that make up the entire core. This includes any controls, web
forms, class files, and any other files required for the core application. With the release of DNN 3, we
have changed the solution organization to break them up into more manageable pieces for each specific
section of DotNetNuke. For module developers there is the module solution located within the <approot>
\Solutions\DotNetNuke.DesktopModules directory. Open the DotNetNuke.DesktopModules.sln file to
open the module solution in Visual Studio .NET. You will see a solution containing approximately 30
projects. These projects are the individual modules that make up DotNetNuke.

When you open the solution you should see the project listings shown in Figure 9-1.

Figure 9-1

Create Your Project
In order to begin module development you will need to create a module project within the
DesktopModules solution. Several projects are already included in the solution, and in this example you
will be using the Events module. To create your own project, step through the following process:

262

Chapter 9

13_595636 ch09.qxd 5/10/05 10:02 PM Page 262

1. With the Visual Studio .NET DotNetNuke.DesktopModules solution open, right-click the solu-
tion at the top of the Solution Explorer. Select Add ➪ New Project from the context menu. This
brings up the Add New Project dialog.

2. Select Class Library from the Templates section, provide a name for your module in the Name
text box, and click Browse to pick a location for the project files. For module development select
<approot>\DesktopModules\ for the project directory (see Figure 9-2). You should now see
your module listed at the bottom of the Solution Explorer.

Figure 9-2

3. Notice BuildSupport project within this solution. This project is what helps you to compile your
assemblies to the bin directory of the main DotNetNuke project. By compiling to the bin direc-
tory of the main DotNetNuke core project, any time you make a change in your development
code and compile, those changes will be displayed within your module when you view it
within your portal in a web browser. This eliminates the need to copy the dll file into
DotNetNuke’s bin directory every time you make a change and recompile. You accomplish this
by adding a reference to your module project to the BuildSupport project as in Figure 9-3.

4. As you can see in Figure 9-3, a reference is created to each of the module projects in DNN.
For the example used in this and the next three chapters, you can see a reference to the Events
module — SQLDataProvider (more about this in the next chapter).

Once your module project has been created, you will need to follow the same procedure in order to cre-
ate your SQLDataProvider project. The only difference for the Data Provider project is the name, which
will be ModuleName.SQLDataProvider (depending on your physical provider; if you were using
Access, it would be AccessDataProvider). It is generally acceptable to place the Data Provider project
in a subdirectory off of your module, so the full path would be <approot>\DesktopModules\Module
Name\Providers\DataProviders\SQLDataProvider\. You would then create a directory for each physi-
cal database you plan on supporting for your module.

263

Beginning Module Development

13_595636 ch09.qxd 5/10/05 10:02 PM Page 263

Figure 9-3

Add Controls
Now that your project has been created, you need to add some controls for your users to interface with
and some classes for data operations.

There is a limitation with Visual Studio .NET in adding user controls in class projects, user controls
(ascx) cannot be added to a class project. In many cases developers will copy an existing ascx control
from another module project and then paste it into the newly created project.

For most modules you will need to create three controls:

❑ View Control: This is the default view users will see when they first access your module.

❑ Edit Control: This is for updating the data contained in the module’s tables within the database.

❑ Settings Control: This is for specifying unique values for a particular instance of a module.

264

Chapter 9

13_595636 ch09.qxd 5/10/05 10:02 PM Page 264

The Events module example has the Events.ascx (View Control), EditEvents.ascx (Edit Control), and the
Settings.ascx (Settings Control).

A member of the DNN Core Team has created templates that you can use to install into your Visual
Studio .NET application to ease the process of creating controls, as well as project files. They can be
freely downloaded from http://dnnjungle.vmasanas.net/. In addition, you can download Code
Smith templates that will reduce the amount of code you will need to write in order to create a data
provider for your module.

Create Your Classes
Now that you have your controls, you also need to create the supporting classes within the module. In
most modules you will have three classes contained in your main module project:

❑ DataProvider Class: This class contains methods that provide your abstraction layer with the
database. These methods will be overridden by your data provider class in the Data Provider
project (see Chapter 11).

❑ Controller Class: This class contains the methods for manipulating and obtaining data from the
abstraction layer (see Chapter 11).

❑ Info Class: This class contains properties that define your objects (see Chapter 11).

Contained within the Data Provider project is one class, the DataProvider Class. It contains the actual
methods for obtaining and updating the data contained within a specific vendor’s database (see
Chapter 10).

In the Events module the classes are the DataProvider.vb, EventsController.vb, EventsInfo.vb, and
finally the SQLDataProvider.vb in the Data Provider project. We’ll get into more detail on what these
classes do in subsequent chapters, but for now we just want to cover what files need to be created in
order to begin a module development project.

Configuring DotNetNuke to Interface with Your Module
Now that you have your Visual Studio .NET 2003 projects configured, you need to let DotNetNuke
know about your module so you can test your development within your portal. DotNetNuke needs to
know where your user controls are located in order to display them within the portal. In addition to
location, each control type needs to be defined, that is, View, Edit, or Settings. The following section
walks through configuring each control located within a module project.

Creating a Module Definition in DotNetNuke
In order to manually configure your modules in DotNetNuke you will need to log in as the host account.
The first thing you need to do is navigate to the Module Definitions page in the portal:

1. Select Module Definitions from the Host menu.

2. In the Module Definitions page, select Add New Module Definition from the menu options (see
Figure 9-4).

265

Beginning Module Development

13_595636 ch09.qxd 5/10/05 10:02 PM Page 265

Figure 9-4

3. Enter in a Name and Description for your module. Select the check box for Premium if this
module requires an additional payment in order for each portal admin to use the module.

4. Click the Update link button. Additional text boxes appear for you to enter in a definition for
the Desktop Module (see Figure 9-5).

266

Chapter 9

13_595636 ch09.qxd 5/10/05 10:02 PM Page 266

Figure 9-5

5. Provide a name for your module definition. The controls listing will now appear below the
Definitions text box (see Figure 9-6).

267

Beginning Module Development

13_595636 ch09.qxd 5/10/05 10:02 PM Page 267

Figure 9-6

6. Here is where you define the location and type of control that you created in Visual Studio .NET
2003. Click the Add Control link button to bring up the Edit Module Control page (see Figure 9-7).

7. Within the Edit Module Control page, you define a key, which you will key off of in your code-
behind page. For a default view control you would leave this empty, for an edit control you
would use Edit, and for a settings control you would use Settings for your key. Keys are dis-
cussed more in Chapter 12, but they provide you with a mechanism to define which control to
load at a point in your logic. You can have as many controls as you want within your module;
you just need to define a unique key in order to refer to it in your code.

8. Provide a title for your control. This will be displayed within the module container when view-
ing the control in DotNetNuke.

9. Select a source for the module; this is the actual filename and path to your ascx control located
within the DesktopModules directory. DotNetNuke will iterate through the directory structure
and find all controls that are located in module projects under the DesktopModules directory.
This is why you want to ensure you are creating your projects using the proper directory paths
as described earlier in this chapter.

268

Chapter 9

13_595636 ch09.qxd 5/10/05 10:02 PM Page 268

Figure 9-7

10. Select the type of control: Skin Object, Anonymous, View, Edit, Admin, or Host (more on this in
Chapter 12).

11. You can enter in an optional View Order for the control.

12. You can select an optional icon to be displayed next to your control. You must first upload the
image file to your portal for it to be displayed in the drop-down menu.

13. Finally, there is an option for the Help URL, which allows you to provide online help for your
module.

14. Click Update and your control will now be listed. Go through each control that makes up your
module project and add a definition. You can see an example of the definition for the Events
module in Figure 9-8.

269

Beginning Module Development

13_595636 ch09.qxd 5/10/05 10:02 PM Page 269

Figure 9-8

Another item you will notice on the Module Definitions screen is the ability to create a private assembly.
A private assembly allows you to distribute your module to other portals using an automated setup.
This is covered in more detail in Chapter 14.

Once your module is defined, place an instance within a page in your development DotNetNuke. You
should see the initial view control after placing the module in the page, enabling you to view and debug
your module within a live portal installation. Any changes that you now do and then compile will be
instantly seen in this development page.

Summary
This chapter discussed some of the issues you will need to address before you begin any module devel-
opment project. If, after weighing the options, you decide to develop your own module, you learned
how to create your development environment.

270

Chapter 9

13_595636 ch09.qxd 5/10/05 10:02 PM Page 270

The chapter then went on to discuss creating Visual Studio .NET projects and provided an overview of
the DesktopModules solution file contained in the DotNetNuke distribution. Once the module project is
created, you learned to define in your development DotNetNuke portal how to interface with the con-
trols that make up the module.

The next three chapters cover each layer of module development in detail; these are the Data Provider,
Business Logic, and User layers. For the purposes of the example in this book, we will use the Events
module located in the DesktopModules solution as a guide for module development.

271

Beginning Module Development

13_595636 ch09.qxd 5/10/05 10:02 PM Page 271

13_595636 ch09.qxd 5/10/05 10:02 PM Page 272

Developing Modules:
The Database Layer

Now that you understand the concept of modules and are getting ready to develop your own, this
chapter guides you on how to begin development starting with the database layer. As in most appli-
cation development, you want to build a database structure for your application. This chapter cov-
ers some basic database development and how to expose your data to a DotNetNuke module.

Chapter 7 introduced the concept of the Provider Model and how DotNetNuke uses it to abstract
the business layer logic from the physical database. In this chapter you develop your modules by
modeling the three-tier architecture of DotNetNuke.

The following sections on creating tables and stored procedures review some basic SQL Server
development concepts. From there you learn how to expose the stored procedures via a custom
Data Provider that you will develop for your module. Extending on the DotNetNuke architecture,
you will continue on to develop an abstraction layer for the module to provide a separation from
the physical database for your module.

Developing with SQL Server is beyond the scope of this book, but this chapter covers how you
expose your database’s structure to DotNetNuke. We will cover table structure and stored proce-
dures, but this will be for reference on how the structure relates to your module development.

Again, the Events module is used in the example for this chapter and the next two chapters on mod-
ule development. The Events module project is located within the DotNetNuke. DesktopModules
solution in the Solutions directory contained off of the root of the DotNetNuke distribution package.

14_595636 ch10.qxd 5/10/05 9:54 PM Page 273

Database Design
This section reviews the tables and stored procedures that make up the backend database for the Events
module.

The DotNetNuke (DNN) development team wanted a module that could track events, provide a time
for the event, and expire the event so it would no longer show after the expiration date was met. In
order to accomplish this, we needed to create a database structure to store event information, associate
the information with DNN, and then create stored procedures to add, update, and delete event informa-
tion. In the next couple of sections you learn the structure of the database tables for the module and the
stored procedures for performing actions on the data.

For your database manipulation you can use SQL Enterprise Manager, Query Analyzer, or Visual Studio
.NET. The examples in this chapter use Visual Studio .NET 2003 for module development and database
design. The idea behind this chapter and the next three on module development is to do a comprehen-
sive review of the module structure contained within the DNN distribution that you can review.

As discussed in the DotNetNuke chapter, keep in mind that you are not bound by the underlying physi-
cal database. You can use any other database as your backend for module development, and you can
develop modules for whatever database your DotNetNuke install is using. We’re using SQL Server 2000
throughout the book because DotNetNuke natively supports SQL Server 2000 out of the box. The point
of this exercise is to understand the physical database structure and how it applies to the database
provider and abstraction layer you will create for your modules.

Database Structure
This section covers the tables used to store the information. Once a table is created you can begin writing
stored procedures to manipulate the data. One table is used for storing the event information: the Events
table.

Events Table
The Events table stores your event information for the module; it is defined as in Figure 10-1.

The most important field contained within the structure as far as DNN integration goes is the ModuleID
field. This field contains an integer value that is assigned by DNN when you create an instance of your
module. Any values you store specific to this module instance will key off of the value contained in this
field. You will see this as you go through creating the stored procedures. The other fields within the
database are specific to the module itself, and all depend on how you structure your application.

The ItemID field is for identifying the primary key of a specific item within your table. The main concept
here, however, is to fully integrate and create a unique instance of your module with unique instance
items. You will need to specify a ModuleID value that relates to the key provided by DotNetNuke for
every module instance. The following list describes each item in the Events table:

❑ ItemID: The primary key of the event information within the table.

❑ ModuleID: As mentioned, because DNN can contain many instances of a module all with dif-
ferent information, this key consolidates all event information into the one module instance.

274

Chapter 10

14_595636 ch10.qxd 5/10/05 9:54 PM Page 274

❑ Description: A text description of your event for display.

❑ DateTime: A date and time for when the event begins.

❑ Title: The title of the event presented to the user.

❑ ExpireDate: When the event will no longer be displayed in your portal.

❑ CreatedByUser: Tracks the ID of the portal user that created the event.

❑ CreatedDate: When the event was created.

❑ Every: If this is a recurring event, the period of time the event occurs. This is related to the
Period field, which defines the amount of time between events.

❑ Period: Related to the Every field, this specifies the period between events, that is, days, weeks,
months, years.

❑ IconFile: For displaying an icon next to the event listing within the module.

❑ AltText: Alternate text to be displayed when hovering your mouse cursor over the icon. This
also aids your portal in complying with the Americans with Disabilities Act (ADA) Section 508.

This covers how you’re going to store the data that is entered into the module. Next you create the
stored procedures necessary for working with the data.

Figure 10-1

275

Developing Modules: The Database Layer

14_595636 ch10.qxd 5/10/05 9:54 PM Page 275

AddEvent Stored Procedure
The first stored procedure you’re going to create for this module is AddEvent (see Listing 10-1). This
procedure used to add an event to the Events table.

Listing 10-1: The AddEvent Stored Procedure for the Events Module

ALTER procedure dbo.AddEvent

@ModuleID int,
@Description nvarchar(2000),
@DateTime datetime,
@Title nvarchar(100),
@ExpireDate datetime = null,
@UserName nvarchar(200),
@Every int,
@Period char(1),
@IconFile nvarchar(256),
@AltText nvarchar(50)

as

insert into Events (
ModuleID,
Description,
DateTime,
Title,
ExpireDate,
CreatedByUser,
CreatedDate,
Every,
Period,
IconFile,
AltText

)
values (

@ModuleID,
@Description,
@DateTime,
@Title,
@ExpireDate,
@UserName,
getdate(),
@Every,
@Period,
@IconFile,
@AltText

)

select SCOPE_IDENTITY()

There is nothing special about this stored procedure — it’s a basic insert statement, and it accepts
parameters from your database provider for populating the event information. One thing to keep in

276

Chapter 10

14_595636 ch10.qxd 5/10/05 9:54 PM Page 276

mind throughout all the stored procedures is that the parameter of ModuleID is always passed when
creating a new record that is associated with your module. Later in this book you learn how to obtain
the module ID from DotNetNuke and pass it to your stored procedure.

DeleteEvent Stored Procedure
The DeleteEvent stored procedure (see Listing 10-2) is for deleting an event previously added to
DotNetNuke.

Listing 10-2: The DeleteEvent Stored Procedure for the Events Module

ALTER procedure dbo.DeleteEvent

@ItemId int

as

delete
from Events
where ItemId = @ItemId

There is no need to pass a parameter value for ModuleID in this procedure. Because you’re only concerned
about performing a delete operation on the data, you only need to determine the PK of the specific event
record.

GetEvent Stored Procedure
The GetEvent stored procedure (see Listing 10-3) is for getting a single event’s information.

Listing 10-3: The GetEvent Stored Procedure for the Events Module

ALTER procedure dbo.GetEvent

@ItemId int,
@ModuleId int

as

select Events.ItemId,
Events.ModuleId,

Events.Description,
Events.DateTime,
Events.Title,
Events.ExpireDate,
‘CreatedByUser’ = Users.FirstName + ‘ ‘ + Users.LastName,
Events.CreatedDate,
Events.Every,
Events.Period,
‘IconFile’ = case when Files.FileName is null then Events.IconFile else

Files.Folder + Files.FileName end,

(continued)

277

Developing Modules: The Database Layer

14_595636 ch10.qxd 5/10/05 9:54 PM Page 277

Listing 10-3: (continued)

Events.AltText
from Events
left outer join Users on Events.CreatedByUser = Users.UserId
left outer join Files on Events.IconFile = ‘fileid=’ +
convert(varchar,Files.FileID)
where ItemId = @ItemId
and ModuleId = @ModuleId

Here, you are passing the ModuleID parameter along with the specific ItemID for the event. This stored
procedure is used for obtaining a single event for modification or display.

GetEvents Stored Procedure
The GetEvents stored procedure (see Listing 10-4) is used for obtaining several events for a listing of a
specific module instance.

Listing 10-4: The GetEvents Stored Procedure for the Events Module

ALTER procedure dbo.GetEvents

@ModuleId int

as

select Events.ItemId,
Events.ModuleId,
Events.Description,
Events.DateTime,
Events.Title,
Events.ExpireDate,
Events.CreatedByUser,
Events.CreatedDate,
‘IconFile’ = case when Files.FileName is null then Events.IconFile else

Files.Folder + Files.FileName end,
Events.AltText,
‘MaxWIdth’ = (select max(WIdth) from Events left outer join Files on

Events.IconFile = ‘fileid=’ + convert(varchar,Files.FileID) where ModuleId =
@ModuleId and (ExpireDate > getdate() or ExpireDate is null))
from Events
left outer join Files on Events.IconFile = ‘fileid=’ +
convert(varchar,Files.FileID)
where ModuleId = @ModuleId
and (ExpireDate > getdate() or ExpireDate is null)
order by DateTime

The only parameter passed to this stored procedure is the ModuleID value. This will pull all events for
one module instance.

GetEventsByDate Stored Procedure
The GetEventsByDate stored procedure (see Listing 10-5) pulls all events within a specified date range
for a specific module instance.

278

Chapter 10

14_595636 ch10.qxd 5/10/05 9:54 PM Page 278

Listing 10-5: The GetEventsByDate Stored Procedure for the Events Module

ALTER procedure dbo.GetEventsByDate

@ModuleId int,
@StartDate datetime,
@EndDate datetime

as

select Events.ItemId,
Events.ModuleId,
Events.Description,
Events.DateTime,
Events.Title,
Events.ExpireDate,
Events.CreatedByUser,
Events.CreatedDate,
Events.Every,
Events.Period,
‘IconFile’ = case when Files.FileName is null then Events.IconFile else

Files.Folder + Files.FileName end,
Events.AltText

from Events
left outer join Files on Events.IconFile = ‘fileid=’ +
convert(varchar,Files.FileID)
where ModuleId = @ModuleId
and ((Period is null and (DateTime >= @StartDate and DateTime <= @EndDate)) or
Period is not null)
order by DateTime

UpdateEvent
The final stored procedure for the Events module is the UpdateEvent module (see Listing 10-6). This
allows you to update an existing event’s information.

Listing 10-6: The UpdateEvent Stored Procedure for the Events Module

ALTER procedure dbo.UpdateEvent

@ItemId int,
@Description nvarchar(2000),
@DateTime datetime,
@Title nvarchar(100),
@ExpireDate datetime = null,
@UserName nvarchar(200),
@Every int,
@Period char(1),
@IconFile nvarchar(256),
@AltText nvarchar(50)

as

(continued)

279

Developing Modules: The Database Layer

14_595636 ch10.qxd 5/10/05 9:54 PM Page 279

Listing 10-6: (continued)

update Events
set Description = @Description,

DateTime = @DateTime,
Title = @Title,
ExpireDate = @ExpireDate,
CreatedByUser = @UserName,
CreatedDate = getdate(),
Every = @Every,
Period = @Period,
IconFile = @IconFile,
AltText = @AltText

where ItemId = @ItemId

That’s it for your database procedures. The next section covers how to wrap this up and create your own
physical database provider for DotNetNuke.

Database Providers
Module development closely mirrors DotNetNuke architecture. Each module should provide its own
abstraction to the underlying database. This enables you to change physical databases without having to
change or recompile the underlying code of DotNetNuke and your module. Remember, if you want to
support multiple databases with your module, you will need to create a physical provider for each
database you want to support. So even if your DotNetNuke implementation is using a provider other
than the one included in SQL Support, such as Oracle, for example, you will need to create a provider
for your module to support Oracle as well.

The only direct interaction with the previous stored procedures contained in your database will be
done in the provider project. In the modules solution of DotNetNuke, you will see that all modules
have a corresponding project for a SQL Data Provider. For example, the main module project called
DotNetNuke.Events is contained in the DesktopModules solution; in addition to this project we also
have the DotNetNuke.Events.SQLDataProvider project. This project contains the class and methods
necessary to interact with the stored procedures covered earlier in this chapter. The following sections
cover this class and the methods it contains in order to create a provider for this module.

SQLDataProvider Class
The SQLDataProvider class for the Events module, and all modules within the DotNetNuke.Desktop
Modules solution, closely mirrors the structure of the DotNetNuke core architecture. Therefore, you
will see the same methods contained with this project as you would see in the main DotNetNuke
.SQLDataProvider project included in the solutions directory within the DotNetNuke distribution.

280

Chapter 10

14_595636 ch10.qxd 5/10/05 9:54 PM Page 280

Let’s break down the structure of the database provider class for the Events module beginning with
Listing 10-7.

Listing 10-7: Importing Namespaces for the Events Module Data Provider Class

Imports System
Imports System.Data
Imports System.Data.SqlClient
Imports Microsoft.ApplicationBlocks.Data

You can see you import various namespaces into your class for dealing with the database. The
System.Data.SQLClient is for connecting to the SQL Server database. Since this assembly is for con-
necting to the physical database, you need to use specific classes for connecting and manipulating the
database. The Microsoft.ApplicationBlocks.Data provides your assembly, which helps to reduce
the code required for calling stored procedures and commands.

You can find more information on Microsoft Application Blocks in the Patterns and Practices section
within the MSDN site at http://msdn.microsoft.com/library/en-us/dnanchor/html/
Anch_EntDevAppArchPatPrac.asp.

You’ll notice after importing the namespaces, we then add the namespace DotNetNuke: Namespace
DotNetNuke.Modules.Events. One thing to take note of here is that we’re using a DotNetNuke core
module as an example; if you develop your own modules for DotNetNuke, it is recommended practice
to create your own unique namespace in the form of CompanyName.ModuleName and CompanyName
.ModuleName.SQLDataProvider. This ensures that your namespace is unique and should not conflict
with other third-party modules with a single DotNetNuke portal framework.

From here you have your standard class name, and since you’re creating a physical data provider class,
you’ll also inherit the DataProvider class of DotNetNuke (see Listing 10-8). Each Data Access Layer must
implement the methods contained its DataProvider class, which as you’ll see later, are overridden for
each physical database type.

Listing 10-8: Inheriting the DataProvider Class for the Module

Public Class SqlDataProvider
Inherits DataProvider

Each of the following sections of code for the Data Access Layer are broken down by regions. Regions
are used in DotNetNuke development in order to organize code and make the code more readable. The
first region in the class is the Private Members region (see Listing 10-9). In this region you define the
variables for your provider, which is defined within the web.config.

281

Developing Modules: The Database Layer

14_595636 ch10.qxd 5/10/05 9:54 PM Page 281

Listing 10-9: The Private Members of the Data Access Layer

#Region “Private Members”

Private Const ProviderType As String = “data”
Private _providerConfiguration As Framework.Providers.ProviderConfiguration =

Framework.Providers.ProviderConfiguration.GetProviderConfiguration(ProviderType)
Private _connectionString As String
Private _providerPath As String
Private _objectQualifier As String
Private _databaseOwner As String

#End Region

As in the overall DotNetNuke architecture, the code will refer to the provider configuration within the
data section of the web.config (see Listing 10-10). In this section you define the values for properties in
the SQLDataProvider class.

Listing 10-10: Defining the Default Data Provider in the Web.config

<data defaultProvider=”SqlDataProvider”>
<providers>

<clear />
<add name=”SqlDataProvider”
type=”DotNetNuke.Data.SqlDataProvider, DotNetNuke.SqlDataProvider”
connectionStringName=”SiteSqlServer”
upgradeConnectionString=””
providerPath=”~\Providers\DataProviders\SqlDataProvider\”
objectQualifier=””
databaseOwner=”dbo” />

</providers>
</data>

Next is the Constructors region, where you read the web.config and then populate the values from the
data section to your private members within your class (see Listing 10-11).

Listing 10-11: Constructors Regions in the SQLDataProvider Class of the Events Module

#Region “Constructors”

Public Sub New()
‘ Read the configuration specific information for this provider
Dim objProvider As Framework.Providers.Provider = _

CType(_providerConfiguration.Providers(_providerConfiguration.DefaultProvider),
_ Framework.Providers.Provider)

‘ Read the attributes for this provider
If objProvider.Attributes(“connectionStringName”) <> “” AndAlso _

System.Configuration.ConfigurationSettings.AppSettings(objProvider.Attributes(“conn
ectionStringName”)) <> “” Then

_connectionString =
System.Configuration.ConfigurationSettings.AppSettings(objProvider.Attributes(“conn
ectionStringName”))

Else

282

Chapter 10

14_595636 ch10.qxd 5/10/05 9:54 PM Page 282

_connectionString = objProvider.Attributes(“connectionString”)
End If
_providerPath = objProvider.Attributes(“providerPath”)

_objectQualifier = objProvider.Attributes(“objectQualifier”)
If _objectQualifier <> “” And _objectQualifier.EndsWith(“_”) = False

Then
objectQualifier += “”

End If

_databaseOwner = objProvider.Attributes(“databaseOwner”)
If _databaseOwner <> “” And _databaseOwner.EndsWith(“.”) = False Then

_databaseOwner += “.”

End If

End Sub

#End Region

After populating your private members with values from the web.config, you then expose some public
properties for your class (see Listing 10-12). These properties are read-only and contain the values from
the web.config.

Listing 10-12: Public Properties, Exposing the Database Connection Information in the
SQLDataProvider Class

#Region “Properties”

Public ReadOnly Property ConnectionString() As String
Get

Return _connectionString
End Get

End Property

Public ReadOnly Property ProviderPath() As String
Get

Return _providerPath
End Get

End Property

Public ReadOnly Property ObjectQualifier() As String
Get

Return _objectQualifier
End Get

End Property
Public ReadOnly Property DatabaseOwner() As String

Get
Return _databaseOwner

End Get
End Property

#End Region

283

Developing Modules: The Database Layer

14_595636 ch10.qxd 5/10/05 9:54 PM Page 283

Finally, the database operations of your class are contained within the Public Methods region (see
Listing 10-13). Remember the stored procedures discussed earlier? Now you’re going to expose those
procedures to your module so you can do your add, update, and delete operations, as well as obtain
the data so it can be displayed in your module.

Listing 10-13: Public Methods within the SQLDataProvider Class

#Region “Public Methods”

Private Function GetNull(ByVal Field As Object) As Object
Return Common.Utilities.Null.GetNull(Field, DBNull.Value)

End Function

Public Overrides Function AddEvent(ByVal ModuleId As Integer, _
ByVal Description As String, ByVal DateTime As Date, _
ByVal Title As String, ByVal ExpireDate As Date, _
ByVal UserName As String, ByVal Every As Integer, _
ByVal Period As String, ByVal IconFile As String, _
ByVal AltText As String) As Integer

Return CType(SqlHelper.ExecuteScalar(ConnectionString, _
DatabaseOwner & ObjectQualifier & “AddEvent”, ModuleId, _
Description, DateTime, Title, GetNull(ExpireDate), _
UserName, GetNull(Every), GetNull(Period), _
GetNull(IconFile), GetNull(AltText)), Integer)

End Function

Public Overrides Sub DeleteEvent(ByVal ItemId As Integer)
SqlHelper.ExecuteNonQuery(ConnectionString, DatabaseOwner & _

ObjectQualifier & “DeleteEvent”, ItemId)
End Sub

Public Overrides Function GetEvent(ByVal ItemId As Integer, _
ByVal ModuleId As Integer) As IDataReader

Return CType(SqlHelper.ExecuteReader(ConnectionString, _
DatabaseOwner & ObjectQualifier & “GetEvent”, ItemId, _
ModuleId), IDataReader)

End Function

Public Overrides Function GetEvents(ByVal ModuleId As Integer) As _
IDataReader

Return CType(SqlHelper.ExecuteReader(ConnectionString, _
DatabaseOwner & ObjectQualifier & “GetEvents”, ModuleId), _
IDataReader)

End Function

Public Overrides Function GetEventsByDate(ByVal ModuleId As Integer, _
ByVal StartDate As Date, ByVal EndDate As Date) As IDataReader

Return CType(SqlHelper.ExecuteReader(ConnectionString, _
DatabaseOwner & ObjectQualifier & “GetEventsByDate”, _
ModuleId, StartDate, EndDate), IDataReader)

End Function

284

Chapter 10

14_595636 ch10.qxd 5/10/05 9:54 PM Page 284

Public Overrides Sub UpdateEvent(ByVal ItemId As Integer, _
ByVal Description As String, ByVal DateTime As Date, _
ByVal Title As String, ByVal ExpireDate As Date, _
ByVal UserName As String, ByVal Every As Integer, _
ByVal Period As String, ByVal IconFile As String, _
ByVal AltText As String)
SqlHelper.ExecuteNonQuery(ConnectionString, DatabaseOwner & _

ObjectQualifier & “UpdateEvent”, ItemId, Description, _
DateTime, Title, GetNull(ExpireDate), UserName, _
GetNull(Every), GetNull(Period), GetNull(IconFile), _
GetNull(AltText))

End Sub

#End Region

You can see there is a one-to-one relationship within this class, so each method has a corresponding
stored procedure within your SQL database. So let’s break down a method here and explain what is
happening. We’ll use the GetEvents method.

Each event is a public method that overrides a corresponding method within the base class (DataProvider),
which you inherited in the beginning of the class. So not only do you have a corresponding method in this
class for each stored procedure, you also have a corresponding method in the base DataProvider class,
which is located in the main module project. The method within the base class is an abstracted method that
your module only deals with; this enables you to totally separate the physical database interactions from
your module assembly.

Next you’ll notice that all parameters that the stored procedure accepts are passed to your methods as
well. In addition, you then execute the command and pass the database connection information such as
the connection string, database owner account, object qualifier, name of the stored procedure, and the
parameters it accepts.

The method then returns an IDataReader (if appropriate, as in SQL select statements) containing the
result set from the database using the SQLHelper.ExecuteReader provided by the Microsoft Data
Access Application Block you imported at the beginning of the class.

Finally, in order to handle null values returned from the database, DotNetNuke provides the GetNull
method. When you create a method for your database, as was done in AddEvent and UpdateEvent in
Listing 10-13, you should wrap the parameters with the GetNull method. This will prevent errors from
being raised in your Data Provider due to the null values.

That’s it for the Data Access Layer. Remember this layer is compiled into its own assembly binary sepa-
rate from the module’s main assembly. By maintaining this separation you can easily plug in providers
for other databases. In addition, no recompile to your base class is necessary when changing database
operations, or when replacing physical providers.

Data Abstraction
The next part of the module for data operations is the creation of the abstraction class. Remember in the
Data Access Layer you created methods that overrode the base class? Well now we need to cover that
base class and gain some insight on how you provide an abstraction class for the Events module.

285

Developing Modules: The Database Layer

14_595636 ch10.qxd 5/10/05 9:54 PM Page 285

DataProvider Class
You now need to switch over to the main module project (DotNetNuke.Events). In this project we have a
class file called DataProvider.vb. This class contains nothing but overridable methods, which you over-
rode within your Data Access Layer class in the previous section.

The first thing you’ll do within this class is import the necessary namespaces and define your class (see
Listing 10-14). You’ll notice you use the MustInherit keyword within your class to specify that this class
can only be used as a base class, as it is used in the SQLDataProvider class.

Listing 10-14: Creating the Abstraction Class for the Events Module

Imports System
Imports DotNetNuke

Namespace DotNetNuke.Modules.Events
Public MustInherit Class DataProvider

Next is the Shared and Static region (see Listing 10-15) within the class. When the class is instantiated
you call the CreateProvider method.

Listing 10-15: Shared/Static Methods in the Data Provider Class of the Events Module

#Region “Shared/Static Methods”

‘ singleton reference to the instantiated object
Private Shared objProvider As DataProvider = Nothing

‘ constructor
Shared Sub New()

CreateProvider()
End Sub

‘ dynamically create provider
Private Shared Sub CreateProvider()

objProvider = CType(Framework.Reflection.CreateObject(“data”, _
“DotNetNuke.Modules.Events”, “DotNetNuke.Modules.Events”), _
DataProvider)

End Sub

‘ return the provider
Public Shared Shadows Function Instance() As DataProvider

Return objProvider
End Function

#End Region

286

Chapter 10

14_595636 ch10.qxd 5/10/05 9:54 PM Page 286

Finally, within the abstraction class you have what provides the abstraction, the abstraction methods (see
Listing 10-16). Remember these methods from your SQLDataProvider? Each method contained in this
base class has a corresponding method within your Data Access Layer’s class. You’ll notice each method
uses the MustOverride keyword to specify that its method will be overridden by the class inheriting the
abstraction class.

Listing 10-16: The Abstraction Methods in the Data Provider Class of the Events Module

#Region “Abstract methods”

Public MustOverride Function AddEvent(ByVal ModuleId As Integer, _
ByVal Description As String, ByVal DateTime As Date, _
ByVal Title As String, ByVal ExpireDate As Date, _
ByVal UserName As String, ByVal Every As Integer, _
ByVal Period As String, ByVal IconFile As String, _
ByVal AltText As String) As Integer

Public MustOverride Sub DeleteEvent(ByVal ItemID As Integer)
Public MustOverride Function GetEvent(ByVal ItemId As Integer, _

ByVal ModuleId As Integer) As IDataReader
Public MustOverride Function GetEvents(ByVal ModuleId As Integer) _

As IDataReader
Public MustOverride Function GetEventsByDate(ByVal ModuleId As Integer, _

ByVal StartDate As Date, ByVal EndDate As Date) As IDataReader
Public MustOverride Sub UpdateEvent(ByVal ItemId As Integer, _

ByVal Description As String, ByVal DateTime As Date, _
ByVal Title As String, ByVal ExpireDate As Date, _
ByVal UserName As String, ByVal Every As Integer, _
ByVal Period As String, ByVal IconFile As String, _
ByVal AltText As String)

#End Region

End Class

End Namespace

Now you should see the separation of the module from the physical database. Module development
closely mirrors DotNetNuke architecture; all aspects of the application are totally separated from the
underlying physical database.

Summary
This chapter covered the physical database creation all the way to the abstraction class contained in your
module project. Here are points to remember when developing your database and data classes for your
module:

❑ In addition to a primary key for module records, add a module ID field, because each module
instance is assigned a unique module ID by the DotNetNuke framework.

❑ Each stored procedure will have a corresponding method contained within the Data Access Layer.

287

Developing Modules: The Database Layer

14_595636 ch10.qxd 5/10/05 9:54 PM Page 287

288

Chapter 10

❑ Each physical database provider will be created in its own assembly project in the same name-
space as the module.

❑ Each abstraction base class will contain duplicate method names in the Data Access Layer that
must be overridden.

That’s it for the abstraction class. The next chapter covers the Business Logic Layer (BLL), in which you
take the data from your database and create objects that you later bind to your user controls for display.

14_595636 ch10.qxd 5/10/05 9:54 PM Page 288

Developing Modules:
Business Logic Layer

Previous chapters covered how to create a physical database provider for your module, and how
all the methods contained in the provider directly correlate to stored procedures within the
database. Once the provider was completed, you created an abstraction class that abstracts the
methods contained in the physical database in order to be used by the Business Logic Layer (BLL).

In this chapter, you take the database portion and transform the record set into a collection of
objects that is provided by the Business Logic Layer within your module. We will continue with
concepts that were introduced in Chapter 7 on the DNN architecture, because module architecture
mirrors the architecture provided by DNN.

The idea here is to totally separate the physical database from the module or application logic that
you create. Separating the two enables plug-and-play extensibility when you want to change a
database provider. Because the provider is abstracted from the actual business logic, you can use
the same code, but different data stores, and since they’re compiled separately, there is no need to
recompile the application in order to change database providers.

We will now continue this provider architecture to the business logic of the application. Here you
create a collection of objects with specific properties that will be exposed to your user layer, which
is covered in Chapter 12.

Developing the Business Logic Layer
Start by opening the Events module project located in the DotNetNuke.DesktopModules solution in
the Solutions directory contained off of the root of the .NET Nuke distribution package. Open the
solution in Visual Studio .NET 2003 to view the module projects; specifically, the DotNetNuke.Events
module project you were working with in the previous chapter.

15_595636 ch11.qxd 5/10/05 9:54 PM Page 289

As you’ll recall, the DataProvider.vb class within this project is the abstraction class, and it contains
overridable methods for each method contained in the physical provider class. Now you will take these
methods and wrap them with additional classes in order to populate an array of objects with specific
properties.

Defining the Properties for the Info Class
This section covers the EventsInfo.vb class contained in the project folder. This class is what describes
your objects for the Events module that will be returned from the database.

At the top of the class file, we’ll do our imports as in the following code.

Imports System
Imports System.Configuration
Imports System.Data

Following this we have our namespace. For this example, you’ll stay within the DotNetNuke namespace,
but if you were creating your own modules separate from DNN, you could use a custom namespace in
the form of CompanyName.ModuleName.

Namespace DotNetNuke.Modules.Events

Listing 11-1 shows the Private Members region at the top of the class. Here you define private variables
and their types. These variables will be used to store the values for each property for your class.

Listing 11-1: The Private Members Region of the EventInfo Class

Public Class EventInfo

#Region “Private Members”

Private _ItemId As Integer
Private _ModuleId As Integer
Private _Description As String
Private _DateTime As Date
Private _Title As String
Private _ExpireDate As Date
Private _CreatedByUser As String
Private _CreatedDate As Date
Private _Every As Integer
Private _Period As String
Private _IconFile As String
Private _AltText As String
Private _MaxWidth As Integer

#End Region

Below the Private Members region is the Constructors region (see Listing 11-2). In object-oriented pro-
gramming, the constructor is a special method for this class that must be present in order for the object
to be instantiated; in the Events module with VB.NET it is New. If you needed to write special initializa-
tion code for the EventInfo class, you would do so here in order to ensure the code is executed.

290

Chapter 11

15_595636 ch11.qxd 5/10/05 9:54 PM Page 290

Listing 11-2: The Constructors for the EventInfo Class

#Region “Constructors”

Public Sub New()
End Sub

#End Region

Next are the public properties of the EventInfo class, which are used to define your object (see Listing 11-3).
For example, an event has an ItemID, ModuleID, Description, and other properties. These correspond to
the fields contained within the database for this module (see Chapter 10).

Listing 11-3: The Public Properties for the EventInfo Class

#Region “Properties”

Public Property ItemId() As Integer
Get

Return _ItemId
End Get
Set(ByVal Value As Integer)

_ItemId = Value
End Set

End Property

Public Property ModuleId() As Integer
Get

Return _ModuleId
End Get
Set(ByVal Value As Integer)

_ModuleId = Value
End Set

End Property

Public Property Description() As String
Get

Return _Description
End Get
Set(ByVal Value As String)

_Description = Value
End Set

End Property

Public Property DateTime() As Date
Get

Return _DateTime
End Get
Set(ByVal Value As Date)

_DateTime = Value
End Set

End Property

(continued)

291

Developing Modules: Business Logic Layer

15_595636 ch11.qxd 5/10/05 9:54 PM Page 291

Listing 11-3: (continued)

Public Property Title() As String
Get

Return _Title
End Get
Set(ByVal Value As String)

_Title = Value
End Set

End Property

Public Property ExpireDate() As Date
Get

Return _ExpireDate
End Get
Set(ByVal Value As Date)

_ExpireDate = Value
End Set

End Property

Public Property CreatedByUser() As String
Get

Return _CreatedByUser
End Get
Set(ByVal Value As String)

_CreatedByUser = Value
End Set

End Property

Public Property CreatedDate() As Date
Get

Return _CreatedDate
End Get
Set(ByVal Value As Date)

_CreatedDate = Value
End Set

End Property

Public Property Every() As Integer
Get

Return _Every
End Get
Set(ByVal Value As Integer)

_Every = Value
End Set

End Property

Public Property Period() As String
Get

Return _Period
End Get
Set(ByVal Value As String)

_Period = Value
End Set

End Property

292

Chapter 11

15_595636 ch11.qxd 5/10/05 9:54 PM Page 292

Public Property IconFile() As String
Get

Return _IconFile
End Get
Set(ByVal Value As String)

_IconFile = Value
End Set

End Property

Public Property AltText() As String
Get

Return _AltText
End Get
Set(ByVal Value As String)

_AltText = Value
End Set

End Property

Public Property MaxWidth() As Integer
Get

Return _MaxWidth
End Get
Set(ByVal Value As Integer)

_MaxWidth = Value
End Set

End Property

#End Region

End Class

End Namespace

Notice that each property you expose for your object corresponds to a field name within the Events table
in DotNetNuke.

Creating Objects Using the Controller Class
Now that you have the properties defined for your objects, you need to populate the objects with values
from your database. This object population begins with the Controller class. In this case the controller is
contained in the EventsController.vb class file in the module project. Let’s open up this file and review
its contents.

Again, at the top of the file are the library imports:

Imports DotNetNuke.Services.Search
Imports System
Imports System.Configuration
Imports System.Data
Imports System.XML

293

Developing Modules: Business Logic Layer

15_595636 ch11.qxd 5/10/05 9:54 PM Page 293

Following this you again have to specify your namespace:

Namespace DotNetNuke.Modules.Events

Next, you implement a couple of interfaces after you define your class (see Listing 11-4). In this module
you implement the Entities.Modules.ISearchable and Entities.Modules.IPortable. These are two inter-
faces that provide your module with the ability to tie into the search mechanism and the ability to export
data from your module and import it into another instance of your module on another page within the
portal. We’ll cover these interfaces in more detail later in this chapter.

Listing 11-4: Defining the Controller Class for the Events Module

Public Class EventController
Implements Entities.Modules.ISearchable
Implements Entities.Modules.IPortable

Listing 11-5 shows the public methods within the Controller class that are used to populate an ArrayList
of objects from the record set received from your abstraction class.

Listing 11-5: Public Methods of the EventsController Class

#Region “Public Methods”

Public Sub AddEvent(ByVal objEvent As EventInfo) _
DataProvider.Instance().AddEvent(objEvent.ModuleId, _
objEvent.Description, objEvent.DateTime, objEvent.Title, _
objEvent.ExpireDate, objEvent.CreatedByUser, objEvent.Every, _
objEvent.Period, objEvent.IconFile, objEvent.AltText)

End Sub

Public Sub DeleteEvent(ByVal ItemID As Integer)
DataProvider.Instance().DeleteEvent(ItemID)

End Sub

Public Function GetEvent(ByVal ItemId As Integer, _
ByVal ModuleId As Integer) As EventInfo

Return CType(CBO.FillObject(DataProvider.Instance().GetEvent(ItemId, _
ModuleId), GetType(EventInfo)), EventInfo)

End Function

Public Function GetEvents(ByVal ModuleId As Integer, _
ByVal StartDate As Date, ByVal EndDate As Date) As ArrayList

If (Not Common.Utilities.Null.IsNull(StartDate)) And _
(Not Common.Utilities.Null.IsNull(EndDate)) Then
Return _
CBO.FillCollection(DataProvider.Instance().GetEventsByDate(ModuleId, _

StartDate, EndDate), GetType(EventInfo))
Else

Return _
CBO.FillCollection(DataProvider.Instance().GetEvents(ModuleId), _

GetType(EventInfo))
End If

End Function

294

Chapter 11

15_595636 ch11.qxd 5/10/05 9:54 PM Page 294

Public Sub UpdateEvent(ByVal objEvent As EventInfo)
DataProvider.Instance().UpdateEvent(objEvent.ItemId, _

objEvent.Description, objEvent.DateTime, objEvent.Title, _
objEvent.ExpireDate, objEvent.CreatedByUser, objEvent.Every, _
objEvent.Period, objEvent.IconFile, objEvent.AltText)

End Sub

#End Region

In Listing 11-5, notice that each method — AddEvent, DeleteEvent, GetEvent, GetEvents, and
UpdateEvent — are all methods in the Data Abstraction class (DataProvider.vb) in the Events module
project of the solution. Each method creates an instance of the DataProvider class, and calls its corre-
sponding event. Recall from Chapter 10 that each method in the abstraction class (DataProvider.vb in
the Events module project) also has a corresponding method in the physical provider (SQLDataProvider
project) as a wrapper to the stored procedures contained in the SQL Server database. Each method
accepts a value that corresponds to values passed to parameters contained in the stored procedure. For
example, the DeleteEvent stored procedure contains a parameter of ItemID for specifying the primary
key of the event contained in the Events table. As such, the sub DeleteEvent in the Controller class
accepts an ItemID of type integer.

Custom Business Object Help Class
As an item of note here, DotNetNuke provides the Custom Business Object (CBO) helper class. The class
file is located in the <webroot>\Components\Shared\CBO.vb class file.

This class provides several methods, but for our area of concern we want to focus on two: the FillObject,
which creates an object with one item as in the case with the GetEvents method in Listing 11-5, and the
FillCollection method, which creates an ArrayList of objects from matching records returned from the
database.

Optional Interfaces for the Events Module Controller Class
The last code region in the EventsController class is the Optional Interfaces region. Contained in this
region are methods for interacting with the ISearchable and IPortable interfaces provided by
DotNetNuke. You do not have to use these methods, but it is recommended in order to provide a fully
functional module that is capable of exposing all the features of DotNetNuke.

ISearchable
Listing 11-6 defines properties of the individual events from your module to be placed in the search cata-
log of the DotNetNuke index.

Listing 11-6: Defining Search Items of the Module for DotNetNuke Search

Public Function GetSearchItems(ByVal ModInfo As Entities.Modules.ModuleInfo) As _
Services.Search.SearchItemInfoCollection Implements _
Entities.Modules.ISearchable.GetSearchItems

Dim SearchItemCollection As New SearchItemInfoCollection
Dim Events As ArrayList = GetEvents(ModInfo.ModuleID, _

(continued)

295

Developing Modules: Business Logic Layer

15_595636 ch11.qxd 5/10/05 9:54 PM Page 295

Listing 11-6: (continued)

Convert.ToDateTime(Common.Utilities.Null.NullDate), _
Convert.ToDateTime(Common.Utilities.Null.NullDate))

Dim objEvents As Object
For Each objEvents In Events

Dim SearchItem As SearchItemInfo
With CType(objEvents, EventInfo)

Dim UserId As Integer = Null.NullInteger
If IsNumeric(.CreatedByUser) Then

UserId = Integer.Parse(.CreatedByUser)
End If
SearchItem = New SearchItemInfo(ModInfo.ModuleTitle & _

“ - “ & .Title, .Description, UserId, .CreatedDate, _
ModInfo.ModuleID, .ItemId.ToString, .Description, “ItemId=” & _
.ItemId.ToString)

SearchItemCollection.Add(SearchItem)
End With

Next
Return SearchItemCollection

End Function

Listing 11-6 contains a function called GetSearchItems, which will return a type of SearchItemInfoCollection
that contains the values from the Events module when you call the GetEvents method. You loop through the
events returned from calling GetEvents and create a new object of SearchItem. You then define the proper-
ties of the SearchItem by using the SearchItemInfo. You’ll pass the values for the object to the SearchItem,
which will be populated into the DotNetNuke catalog for searching. If you do not want to make the items
searchable in the portal, simply do not implement the interface and include the GetSearchItems function.

This should sound very familiar after getting to this point in the book. Module development closely mir-
rors the architecture of DotNetNuke. Not only does the core application support abstraction classes and
the Provider Model extensively, but you should also duplicate this methodology in your own develop-
ment. This ensures your development is consistent with other modules contained in DotNetNuke, and
also eases the process of upgrading for future versions of DotNetNuke.

Note that the SearchItemInfo class exposes properties for the SearchItem object, similar to the Events
class. This structure is consistent throughout the DotNetNuke architecture and in module development
as well.

IPortable
Another interface provided by DotNetNuke that the Events module implements is the IPortable inter-
face. This interface provides the module the ability to export the data contained for that module instance
to another module instance.

Listing 11-7 looks at how you export data from the module instance.

Listing 11-7: The ExportModule Function for the EventsController Class

Public Function ExportModule(ByVal ModuleID As Integer) As _
String Implements Entities.Modules.IPortable.ExportModule

Dim strXML As String = “”

296

Chapter 11

15_595636 ch11.qxd 5/10/05 9:54 PM Page 296

Dim arrEvents As ArrayList = GetEvents(ModuleID, _
Convert.ToDateTime(Common.Utilities.Null.NullDate), _
Convert.ToDateTime(Common.Utilities.Null.NullDate))

If arrEvents.Count <> 0 Then
strXML += “<events>”
Dim objEvent As EventInfo
For Each objEvent In arrEvents

strXML += “<event>”
strXML += “<description>” & XMLEncode(objEvent.Description) & _

“</description>”
strXML += “<datetime>” & XMLEncode(objEvent.DateTime.ToString) & _

“</datetime>”
strXML += “<title>” & XMLEncode(objEvent.Title) & “</title>”
strXML += “</event>”

Next
strXML += “</events>”

End If
Return strXML

End Function

Again as in the population of the search catalog, you call the GetEvents method to obtain all events for
this particular instance of the module. You then loop through the results and generate an XML string,
which will be returned by the function. Later in your user layer you will implement the method that will
then be called based on the user action.

Listing 11-8 looks at how you import the data from the previously generated XML string.

Listing 11-8: The ImportModule Function for the EventsController Class

Public Sub ImportModule(ByVal ModuleID As Integer, ByVal Content As String, _
ByVal Version As String, ByVal UserId As Integer) _
Implements Entities.Modules.IPortable.ImportModule

Dim xmlEvent As XmlNode
Dim xmlEvents As XmlNode = GetContent(Content, “events”)
For Each xmlEvent In xmlEvents.SelectNodes(“event”)

Dim objEvent As New EventInfo
objEvent.ModuleId = ModuleID
objEvent.Description = xmlEvent.Item(“description”).InnerText
objEvent.DateTime = Date.Parse(xmlEvent.Item(“datetime”).InnerText)
objEvent.Title = xmlEvent.Item(“title”).InnerText
objEvent.CreatedByUser = UserId.ToString
AddEvent(objEvent)

Next

End Sub

As you can see in Listing 11-7, you process the XML that was generated earlier by the ExportModule
routine. This time, you call the AddEvent method of the EventController to populate an event for an ele-
ment in the XML file.

297

Developing Modules: Business Logic Layer

15_595636 ch11.qxd 5/10/05 9:54 PM Page 297

Summary
This chapter completed the process of obtaining data from your database. In Chapter 10 you learned
how to write a provider for a physical database, and in this chapter you converted the data to a collec-
tion of objects that will get bound to user controls in your modules.

In building your business logic layer for your modules, you can take advantage of two interfaces pro-
vided by the DotNetNuke core: IPortable and ISearchable. IPortable provides your modules with the
ability to export the data and settings of one module instance over to another module instance within
your portal. ISearchable enables your modules to take advantage of the full-text indexing capabilities
that are native to DotNetNuke to provide your portal with a search mechanism.

Chapter 12 covers the user interface of the module. You’ll take the collections created by the Business
Logic Layer and bind them to controls on your module.

298

Chapter 11

15_595636 ch11.qxd 5/10/05 9:54 PM Page 298

Developing Modules:
The Presentation Layer

Now you’re at a point where you can start making your presentation layer for your desktop mod-
ule. You have learned how to pull data from the database, provide abstraction, and then transform
the data to a collection of objects from your controller class. This chapter provides you with exam-
ples on how to display, modify, and work with the various controls that make up your desktop
module in DotNetNuke.

The examples in this chapter first illustrate how to make a call to the business object to obtain the
information, and then you’ll create an edit control to update the data and to specify settings that
are specific to the module instance.

From there the chapter moves on to the various user controls and interfaces that you can use to
your advantage in your module development.

Module User Interfaces
Chapter 9 introduced you to module structure and how to manually create references to controls
in order to define your module. Each module consists of a couple of user controls that enable the
user to interface with your application logic. These controls provide a means to view and modify
the data contained in the database supporting the module. DotNetNuke provides you with the
ability to define these controls, and how to interface them into your application using a Module
Definition.

Table 12-1 lists the files that make up a module, their keys (see Chapter 9), and their function. This
example continues with the Events module as in previous chapters.

16_595636 ch12.qxd 5/10/05 9:53 PM Page 299

Table 12-1: Module Definitions and Relation to the Events Module

Type File Name (Events Module) Key Description

View DesktopModules/Events This is the control that your users
/Events.ascx will see on the first request to the

module. You can define multiple
view controls for your module; the
main thing to keep in mind is that
the purpose of the view is to allow
your data to be displayed.

Edit DesktopModules/Events Edit This control is used to edit informa-
/EditEvents.ascx Settings tion contained in the database. A
DesktopModules/Events DesktopModule can consist of sev-
/Settings.ascx eral edit controls based on the com-

plexity of the module. Security for
edit permissions is normally done
at the module level contained
within a specific page.

Admin N/A N/A Not used in the Events module
example, but this control will be
displayed to administrators for a
portal.

Anonymous N/A N/A Use this control for an anonymous
view of your data for your Desktop-
Module.

Host N/A N/A For displaying a host-only control
for your module.

As you can see from Table 12-1, several controls are available that you can make use of in your develop-
ment. The defined types are specific to the user role within a portal. For module development, there may
be data that you want to allow certain roles to access. For example, if the module manipulates the appli-
cation settings or file system, you would want to restrict that functionality to the host who has control
over the overall application instance. Your module may modify settings configured at a portal level, like
the banner ad management system; in this case you could restrict the control to just administrators
within a portal.

You can select many different configurations when doing module development. For now, our focus is to
continue the Events module development covered in the previous two chapters.

Table 12-1 covered the controls specific to the Events module. The Events module consists of three primary
user controls for displaying and manipulating data:

❑ View Control (DesktopModules/Events/Events.ascx): Displays the events either in a listing
format sorted by event date or in a calendar format.

300

Chapter 12

16_595636 ch12.qxd 5/10/05 9:53 PM Page 300

❑ Edit Control (DesktopModules/Events/EditEvents.ascx): For adding and updating infor-
mation for each specific event.

❑ Edit Control (DesktopModules/Events/Settings.ascx): For configuring module-specific
settings like the display.

The next few sections break down each control, and display data from the collection that was defined in
the Business Logic Layer covered in Chapter 11.

View Control
In the Events module the View control is located in the DesktopModules/Events directory and is called
Events.ascx. Open the Events project and look at the user interface to see the controls contained within.
You’ll see two primary controls, one is a datalist control and the other is a calendar control. These two
controls provide the module with two different views on the events data based on what is configured
via the edit control (we’ll discuss this later in this chapter). Listing 12-1 reviews the datalist control from
the Events.ascx file.

Listing 12-1: The DataList Control in the Events.ascx Page

<asp:datalist id=”lstEvents” runat=”server” EnableViewState=”false” summary=”Events
Design Table”>

<itemtemplate>
<table summary=”Events Design Table”>

<tr>
<td id=”colIcon” runat=”server” valign=”top” align=”center”

rowspan=”3” width=’<%# DataBinder.Eval(Container.DataItem,”MaxWidth”) %>’>
<asp:Image ID=”imgIcon” AlternateText=’<%#

DataBinder.Eval(Container.DataItem,”AltText”) %>’ runat=”server” ImageUrl=’<%#
FormatImage(DataBinder.Eval(Container.DataItem,”IconFile”)) %>’ Visible=’<%#
FormatImage(DataBinder.Eval(Container.DataItem,”IconFile”)) <> “” %>’></asp:Image>

</td>
<td>

<asp:HyperLink id=”editLink” NavigateUrl=’<%#
EditURL(“ItemID”,DataBinder.Eval(Container.DataItem,”ItemID”)) %>’ Visible=”<%#
IsEditable %>” runat=”server”><asp:Image id=”editLinkImage”
ImageUrl=”~/images/edit.gif” Visible=”<%# IsEditable %>” AlternateText=”Edit”
runat=”server” /></asp:HyperLink>

<asp:Label ID=”lblTitle” Runat=”server”
Cssclass=”SubHead” text=’<%# DataBinder.Eval(Container.DataItem,”Title”)
%>’></asp:Label>

</td>
</tr>
<tr>

<td>
<asp:Label ID=”lblDateTime” Runat=”server”

Cssclass=”SubHead” text=’<%#
FormatDateTime(DataBinder.Eval(Container.DataItem,”DateTime”)) %>’></asp:Label>

</td>
</tr>
<tr>

(continued)

301

Developing Modules: The Presentation Layer

16_595636 ch12.qxd 5/10/05 9:53 PM Page 301

Listing 12-1: (continued)

<td>
<asp:Label ID=”lblDescription” Runat=”server”

CssClass=”Normal” text=’<%# DataBinder.Eval(Container.DataItem,”Description”)
%>’></asp:Label>

</td>
</tr>

</table>
</ItemTemplate>

</asp:datalist>

You are going to bind the DataList to values from your database that are returned from a stored proce-
dure, and then up to the provider covered in Chapter 10. The field names are MaxWidth, AltText,
IconFile, ItemID, Title, DateTime, and Description.

The calendar control contained in the page provides an alternative view for the module (see Listing 12-2).

Listing 12-2: The Calendar Control within the Events.ascx Provides Another View

<asp:calendar id=”calEvents” runat=”server” BorderWidth=”1” CssClass=”Normal”
SelectionMode=”None” summary=”Events Calendar Design Table”>
<dayheaderstyle backcolor=”#EEEEEE” cssclass=”NormalBold”

borderwidth=”1”></DayHeaderStyle>
<daystyle cssclass=”Normal” borderwidth=”1” verticalalign=”Top”></DayStyle>
<othermonthdaystyle forecolor=”#FFFFFF”></OtherMonthDayStyle>
<titlestyle font-bold=”True”></TitleStyle>
<nextprevstyle cssclass=”NormalBold”></NextPrevStyle>

</asp:calendar>

View Control Code-Behind Class
Now that you have some controls on the form, you need to bind some data to them for display. Recall
from Chapter 11 that you can take data from an abstraction class, which DotNetNuke can then convert to
a collection of objects via the Custom Business Object (CBO) helper class (see Chapter 7). Now you need
to take the ArrayList of objects and bind them to your controls in the code-behind file Events.ascx.vb,
located in the Events project.

At the top of your class you first need to do your name imports, declare your namespace, and define
your class:

Imports DotNetNuke
Imports System.Web.UI.WebControls

Namespace DotNetNuke.Modules.Events
Public MustInherit Class Events

Inherits Entities.Modules.PortalModuleBase

PortalModuleBase Class
Notice you inherit from the Entities.Modules.PortalModuleBase class. The PortalModuleBase class pro-
vides you with the ability to use a large collection of properties and methods within DotNetNuke. The

302

Chapter 12

16_595636 ch12.qxd 5/10/05 9:53 PM Page 302

PortalModuleBase class file is located in the main DotNetNuke project in the <webroot>/Components
/Modules/PortalModuleBase.vb file. In addition to inheriting from the UserControl class of ASP.NET,
this class is very important to your module development efforts. It provides several important methods
and properties for your module (see Table 12-2).

Table 12-2: PortalModuleBase Class Exposed Methods and Properties

Property Type Description

IsEditable Boolean Can be used as a reference to check and see if the current user has
permissions to edit the module. This is defined in the properties
for the DesktopModule in DotNetNuke. For example:

If IsEditable Then
txtEditField.Visible = True

End If

LocalResource String Contains the path value of the resource file that is being used for
File the module. This allows you to support localization for your

modules. This is covered in more detail in Chapter 8.

HelpFile String Contains a value to a local path for a text file containing help
information.

HelpURL String Contains a value for a URL for an external help file for the spe-
cific module.

Module Module Provides information about a specific module.
Configuration Info

PortalId Integer The ID of the current portal that the request is for. This is an inte-
ger value that is generated by DotNetNuke when a host creates a
new portal.

TabId Integer The ID of the current page that the request is going to. This is
generated by DotNetNuke when an admin creates a new page
within the portal.

TabModuleId Integer This contains a value of module within a tab. Multiple tab mod-
ules can point to the same Module ID, allowing two instances of
a module to point to the same date.

ModuleId Integer Returns the current ID of a specific module instance. This is an
integer value that is generated by DotNetNuke when you add a
new instance of a module into a page.

UserInfo UserInfo Contains information for the portal users.

UserId Integer Returns the ID of the current logged-on user.

PortalAlias Portal Contains various information pertaining to the current portal.
AliasInfo

PortalSettings Portal Contains setting information specific to a portal, such as the
Settings admin e-mail.

Table continued on following page

303

Developing Modules: The Presentation Layer

16_595636 ch12.qxd 5/10/05 9:53 PM Page 303

Property Type Description

Settings Hash The Settings hash table is very important to module develop-
Table ment, and is probably one of the most common tools you’ll use.

Consider it analogous to the registry in Windows. You can use
the Settings hash to store and retrieve a key/value pair specific to
your module instance. For example, to retrieve a value from the
settings hash:

Dim myVar As String = Settings(“mykey”).ToString
To set a value:

Dim objModules As New
Entities.Modules.ModuleController

objModules.UpdateTabModuleSetting(TabModuleId,
“mykey”, myVar)

Container Control Provides a container to wrap a module (see Chapter 6 to learn
Control about what a container is).

HasModule Boolean Checks permissions for a specific module instance, such as edit
Permission and view.

DotNetNuke Optional Interfaces
Right below your class declaration, you implement several interfaces:

Implements Entities.Modules.IActionable
Implements Entities.Modules.IPortable
Implements Entities.Modules.ISearchable

These interfaces provide you with the ability to tie into the menu control for your module. As covered pre-
viously in this book, each module contains a menu with a list of action items. In order to add items to the
menus you need to implement the IActionable interface. This is also so with the IPortable interface, which
provides an export and import function for the module, and the ISearchable interface, which enables your
module to take advantage of the integrated search engine within DotNetNuke (see Chapter 8 on the DNN
API for more information on these interfaces).

These interfaces are optional, and at the bottom of the Events.ascx.vb class file, you see a code region
with the name “Optional Interfaces.” Within this region is the code showing you how to implement
these interfaces (see Listing 12-3).

Listing 12-3: Optional Interfaces Region of the Events Module

#Region “Optional Interfaces”

Public ReadOnly Property ModuleActions() As _
Entities.Modules.Actions.ModuleActionCollection Implements _
Entities.Modules.IActionable.ModuleActions

Get
Dim Actions As New _

Entities.Modules.Actions.ModuleActionCollection

304

Chapter 12

16_595636 ch12.qxd 5/10/05 9:53 PM Page 304

Actions.Add(GetNextActionID, _
Localization.GetString(Entities.Modules.Actions.ModuleActionType.AddContent, _
LocalResourceFile), Entities.Modules.Actions.ModuleActionType.AddContent, _
“”, “”, EditUrl(), False, Security.SecurityAccessLevel.Edit, True, False)

Return Actions
End Get

End Property

Public Function ExportModule(ByVal ModuleID As Integer) As String _
Implements Entities.Modules.IPortable.ExportModule
‘ included as a stub only so that the core knows this
‘ module Implements Entities.Modules.IPortable

End Function

Public Sub ImportModule(ByVal ModuleID As Integer, _
ByVal Content As String, ByVal Version As String, ByVal UserId As _
Integer) Implements Entities.Modules.IPortable.ImportModule
‘ included as a stub only so that the core knows
‘ this module Implements Entities.Modules.IPortable

End Sub

Public Function GetSearchItems(ByVal ModInfo As _
Entities.Modules.ModuleInfo) As _
Services.Search.SearchItemInfoCollection Implements _
Entities.Modules.ISearchable.GetSearchItems
‘ included as a stub only so that the core knows this
‘ module Implements Entities.Modules.ISearchable

End Function

#End Region

As you can see in Listing 12-3, the first method is ModuleActions. Here you implement the IActionable
interface in order to add items into the menu for the module. You have a collection of menu items, with
an accompanying action. In this example you add a menu item using the Actions.Add method. You can
see that instead of passing an absolute value for the menu listing, you’re using a localized string using
the Localization.GetString method. By using the localization interface provided by DotNetNuke (see
Chapter 8), you can have menu items displayed in the language of the current user’s profile. Because
this action is going to be for editing the module, you will pass EditURL as the action property for this
item. This will load your Edit control when the user selects this option from the menu. In addition to
localization and the control to load properties, there are security parameters to pass as well. By specify-
ing the security type for the item display, you can restrict the functionality to specific roles configured
within your portal. In this example, you check for users with edit permissions for the module by passing
the value Security.SecurityAccessLevel.Edit.

Below the menu action item method in Listing 12-3 are the methods covered in Chapter 11 for imple-
menting search and import/export functionality for the module. Recall that these methods make a call
to the GetEvents method within the BLL class. You then iterate through all the events for this module
instance and either load them into the search or generate an XML feed for export. Now, you need to
implement a stub for these methods in order for the core to know that the module implements the inter-
faces. DotNetNuke will then execute the corresponding methods contained in your BLL class.

305

Developing Modules: The Presentation Layer

16_595636 ch12.qxd 5/10/05 9:53 PM Page 305

Code-Behind Regions
Now you need to break your class into several regions. You’ll notice DotNetNuke makes use of named
regions throughout the code in order to provide some organization to the code, and for better readabil-
ity. Let’s break down the code regions for this specific module. The first of these regions are the Controls
and Private Members regions. As in any ASP.NET development, you need to declare your web controls
in order to expose the actions, properties, and methods that they contain. In addition, for this specific
example there are some private members — an array of events defined and an integer value for the cur-
rent month (see Listing 12-4).

Listing 12-4: The Controls and Private Members Regions of the Events Module

#Region “Controls”
Protected WithEvents lstEvents As System.Web.UI.WebControls.DataList
Protected WithEvents calEvents As System.Web.UI.WebControls.Calendar

#End Region

#Region “Private Members”
Dim arrEvents(31) As String
Dim intMonth As Integer

#End Region

Following these two regions you begin to get into some code that is going to do something. This code is
contained in the Private Methods region. Normally, your private methods are going to contain methods
that will obtain your data and bind to your controls. In this example there is one method called the
GetCalendarEvents subroutine, which accepts a start date and an end date for obtaining information
from your database (see Listing 12-5). Chapter 10 covered the various stored procedures for this module,
and this method is what calls that process of obtaining a collection from the Business Logic Layer by
calling the GetEvents method. With abstraction, the BLL then calls the abstraction layer, which contains a
method that is overridden by the physical provider class that calls the SQL stored procedure GetEvents.
The stored procedure then returns the fields matching the query to the physical provider, which finally
is converted by DotNetNuke’s Custom Business Object helper class to a collection of objects you define
in the BLL. This collection, or ArrayList, is then bound to the controls that were placed on the page, in
this case either a calendar or datalist control.

Listing 12-5: The GetCalendarEvents Method of the Events Module

#Region “Private Methods”
Private Sub GetCalendarEvents(ByVal StartDate As String, ByVal _

EndDate As String)
Try

Dim objEvents As New EventController
Dim strDayText As String
Dim datTargetDate As Date
Dim datDate As Date
Dim blnDisplay As Boolean
Array.Clear(arrEvents, 0, 32)
Dim Arr As ArrayList = objEvents.GetEvents(ModuleId, _

Convert.ToDateTime(StartDate), _
Convert.ToDateTime(EndDate))

Dim i As Integer
For i = 0 To Arr.Count - 1

306

Chapter 12

16_595636 ch12.qxd 5/10/05 9:53 PM Page 306

Dim objEvent As EventInfo = CType(Arr(i), EventInfo)
‘While dr.Read()
If objEvent.Period.ToString = “” Then

strDayText = “
”
If Not objEvent.IconFile = “” Then

strDayText += “<img alt=””” & objEvent.AltText & “”” _
src=””” & FormatImage(objEvent.IconFile) & “”” _
border=””0””>
”

End If
If IsEditable Then

strDayText += “<a href=””” & _
CType(Common.Globals.ApplicationPath, String) & _
“/” & glbDefaultPage & “?tabid=” & TabId & _
“&mid=” & ModuleId & “&ctl=Edit” & “&ItemID=” & _
objEvent.ItemId & “&VisibleDate=” & _
calEvents.VisibleDate.ToShortDateString & _
“””><img alt=””Edit”” src=””” & _
CType(Common.Globals.ApplicationPath, String) & _
“/images/edit.gif”” border=””0””> ”

End If
strDayText += “” & _

objEvent.Title & “”
If objEvent.DateTime.ToString(“HH:mm”) <> “00:00” Then

strDayText += “
” & _
objEvent.DateTime.ToShortTimeString & “”

End If
strDayText += “
” & _

Server.HtmlDecode(objEvent.Description) & “”
arrEvents(CDate(objEvent.DateTime).Day) += strDayText

Else ‘ recurring event
datTargetDate = CType(objEvent.DateTime, Date)

datDate = Date.Parse(StartDate)
While datDate <= Date.Parse(EndDate)

blnDisplay = False
Select Case objEvent.Period

Case CType(“D”, Char) ‘ day
If DateDiff(DateInterval.Day, datTargetDate.Date, _

datDate) Mod objEvent.Every = 0 Then
blnDisplay = True

End If
Case CType(“W”, Char) ‘ week

If DateAdd(DateInterval.WeekOfYear, _
DateDiff(DateInterval.WeekOfYear, _
datTargetDate.Date, datDate), _
datTargetDate.Date) = datDate Then

If DateDiff(DateInterval.WeekOfYear, _
datTargetDate.Date, datDate) Mod _
objEvent.Every = 0 Then
blnDisplay = True

End If
End If

Case CType(“M”, Char) ‘ month

(continued)

307

Developing Modules: The Presentation Layer

16_595636 ch12.qxd 5/10/05 9:53 PM Page 307

Listing 12-5: (continued)

If DateAdd(DateInterval.Month, _
DateDiff(DateInterval.Month, datTargetDate.Date, _
datDate), datTargetDate.Date) = datDate Then
If DateDiff(DateInterval.Month, _

datTargetDate.Date, datDate) Mod _
objEvent.Every = 0 Then

blnDisplay = True
End If

End If
Case CType(“Y”, Char) ‘ year

If DateAdd(DateInterval.Year, _
DateDiff(DateInterval.Year, datTargetDate.Date, _
datDate), datTargetDate.Date) = datDate Then
If DateDiff(DateInterval.Year, datTargetDate.Date, _

datDate) Mod objEvent.Every = 0 Then
blnDisplay = True

End If
End If

End Select
If blnDisplay Then

If datDate < datTargetDate.Date Then
blnDisplay = False

End If
End If
If blnDisplay Then

If Not _
Common.Utilities.Null.IsNull(objEvent.ExpireDate) Then

If datDate > CType(objEvent.ExpireDate, Date) Then
blnDisplay = False

End If
End If

End If
If blnDisplay Then

strDayText = “
”
If Not objEvent.IconFile = “” Then

strDayText += “<img alt=””” & objEvent.AltText & “”” _
src=””” & FormatImage(objEvent.IconFile) & “”” _
border=””0””>
”

End If
‘check to see if the current user has edit permissions
If IsEditable Then

strDayText += “<a href=””” & _
CType(Common.Globals.ApplicationPath, String) & _
“/” & glbDefaultPage & “?tabid=” & TabId & _
“&mid=” & ModuleId & “&ctl=Edit” & “&ItemID=” & _
objEvent.ItemId & “&VisibleDate=” & _
calEvents.VisibleDate.ToShortDateString & _
“””><img alt=””Edit”” src=””” & _
CType(Common.Globals.ApplicationPath, String) & _
“/images/edit.gif”” border=””0””> ”

End If
strDayText += “” & _

objEvent.Title & “”

308

Chapter 12

16_595636 ch12.qxd 5/10/05 9:53 PM Page 308

If objEvent.DateTime.ToString(“HH:mm”) <> “00:00” Then
strDayText += “
” & _

objEvent.DateTime.ToShortTimeString & “”
End If
strDayText += “
” & _

Server.HtmlDecode(objEvent.Description) & “”
arrEvents(datDate.Day) += strDayText

End If
datDate = DateAdd(DateInterval.Day, 1, datDate)

End While
End If

Next
intMonth = CDate(StartDate).Month
calEvents.DataBind()

Catch exc As Exception ‘Module failed to load
ProcessModuleLoadException(Me, exc)
End Try

End Sub

#End Region

The majority of the code in Listing 12-5 is specific to what we’re doing for displaying the data. In a simple
module you would simply bind the result set to a control, like so:

Dim objEvents As New EventsController
myDatalist.DataSource = objEvents.GetEvents(ModuleId, _

Convert.ToDateTime(StartDate), _
Convert.ToDateTime(EndDate))

myDataList.DataBind

But since you have some criteria on how you want to display events, you load the result set into an
ArrayList, which you then iterate through and format the data for display.

Other items to note in Listing 12-5 include the use of the IsEditable Boolean value to check to see if the
user has permissions to edit content for the module. If the value is true, you then display an edit icon to
allow the user to edit events that are displayed.

Finally, in the exception catching you’ll notice a call to ProcessModuleLoadException. This method is
provided by the DotNetNuke framework for error trapping, which is discussed this later in this chapter.

The next region in this example is the Public Methods region. This is where you expose any methods
that you want to make available outside of this class. Here you’re dealing primarily with formatting
methods and calculating the day of the month (see Listing 12-6).

Listing 12-6: Public Methods Contained in the Events Module

#Region “Public Methods”
Public Function FormatDateTime(ByVal DateTime As Date) As String

Try
FormatDateTime = DateTime.ToLongDateString

(continued)

309

Developing Modules: The Presentation Layer

16_595636 ch12.qxd 5/10/05 9:53 PM Page 309

Listing 12-6: (continued)

If DatePart(DateInterval.Hour, DateTime) <> 0 Or _
DatePart(DateInterval.Minute, DateTime) <> 0 Or _
DatePart(DateInterval.Second, DateTime) <> 0 Then
FormatDateTime = FormatDateTime & “ at “ & _
DateTime.ToShortTimeString

End If
Catch exc As Exception ‘Module failed to load

ProcessModuleLoadException(Me, exc)
End Try

End Function

Public Function FormatImage(ByVal IconFile As String) As String
Try

If Not IconFile = “” Then
FormatImage = PortalSettings.HomeDirectory & IconFile.ToString

End If
Catch exc As Exception ‘Module failed to load

ProcessModuleLoadException(Me, exc)
End Try

End Function

Public Function GetFirstDayofMonth(ByVal datDate As Date) As String
Try

Dim datFirstDayofMonth As Date = DateSerial(datDate.Year, _
datDate.Month, 1)
Return GetMediumDate(datFirstDayofMonth.ToString)

Catch exc As Exception ‘Module failed to load
ProcessModuleLoadException(Me, exc)

End Try
End Function

Public Function GetLastDayofMonth(ByVal datDate As Date) As String
Try

Dim intDaysInMonth As Integer = Date.DaysInMonth(datDate.Year, _
datDate.Month)
Dim datLastDayofMonth As Date = DateSerial(datDate.Year, _

datDate.Month, intDaysInMonth)
Return GetMediumDate(datLastDayofMonth.ToString)

Catch exc As Exception ‘Module failed to load
ProcessModuleLoadException(Me, exc)

End Try
End Function

#End Region

The next region in the code is the Event Handlers section. As you know from ASP.NET programming,
events handlers are methods that respond to a certain action, be it an action performed by a user, such as
a click event, or a system action such as the page loading. In this Events module example you are con-
cerned with three events. The first is the page load event. The page load in your module is usually where
you determine the initial state of your application. For example, you may check to see if the request is a
postback, which means the user clicked on a link button or form button to call the module again. Listing
12-7 looks at the code in the Event Handlers section to see how the page load is handled in this module.

310

Chapter 12

16_595636 ch12.qxd 5/10/05 9:53 PM Page 310

Listing 12-7: The Event Handlers Region in the Events Module

#Region “Event Handlers”
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As _
System.EventArgs) Handles MyBase.Load

Try
Dim EventView As String = CType(Settings(“eventview”), _
String)

If EventView Is Nothing Then
EventView = “C” ‘ calendar

End If

Dim objEvents As New EventController
Select Case EventView

Case “L” ‘ list
lstEvents.Visible = True
calEvents.Visible = False
lstEvents.DataSource = objEvents.GetEvents(ModuleId, _
Convert.ToDateTime(Common.Utilities.Null.NullDate), _
Convert.ToDateTime(Common.Utilities.Null.NullDate))

lstEvents.DataBind()
Case “C” ‘ calendar

lstEvents.Visible = False
calEvents.Visible = True

If Not Page.IsPostBack Then
If Not Request.QueryString(“VisibleDate”) _
Is Nothing Then

calEvents.VisibleDate = _
CType(Request.QueryString(“VisibleDate”), _
Date)

Else
calEvents.VisibleDate = Now

End If
If CType(Settings(“eventcalendarcellwidth”), _

String) <> “” Then
calEvents.Width = _

System.Web.UI.WebControls.Unit.Parse(CType(Settings(“eventcalendarcellwidth”), _
String) & “px”)

End If
If CType(Settings(“eventcalendarcellheight”), _

String) <> “” Then
calEvents.Height = _

System.Web.UI.WebControls.Unit.Parse(CType(Settings(“eventcalendarcellheight”), _
String) & “px”)

End If
Else

If calEvents.VisibleDate = #12:00:00 AM# Then
calEvents.VisibleDate = Now

End If
End If

Dim StartDate As String = _
GetFirstDayofMonth(calEvents.VisibleDate) & “ 00:00”

(continued)

311

Developing Modules: The Presentation Layer

16_595636 ch12.qxd 5/10/05 9:53 PM Page 311

Listing 12-7: (continued)

Dim EndDate As String = _
GetLastDayofMonth(calEvents.VisibleDate) & “ 23:59”
GetCalendarEvents(StartDate, EndDate)

End Select
Catch exc As Exception ‘Module failed to load

ProcessModuleLoadException(Me, exc)
End Try

End Sub

Private Sub calEvents_DayRender(ByVal sender As Object, ByVal e As _
System.Web.UI.WebControls.DayRenderEventArgs) Handles _
calEvents.DayRender
Try

If e.Day.Date.Month = intMonth Then
Dim ctlLabel As Label = New Label
ctlLabel.Text = arrEvents(e.Day.Date.Day)
e.Cell.Controls.Add(ctlLabel)

End If
Catch exc As Exception ‘Module failed to load

ProcessModuleLoadException(Me, exc)
End Try

End Sub

Private Sub calEvents_VisibleMonthChanged(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.MonthChangedEventArgs) Handles _
calEvents.VisibleMonthChanged

Try
Dim StartDate As String = GetFirstDayofMonth(e.NewDate.Date) & _
“ 00:00”
Dim EndDate As String = GetLastDayofMonth(e.NewDate.Date) & _
“ 23:59”
GetCalendarEvents(StartDate, EndDate)

Catch exc As Exception ‘Module failed to load
ProcessModuleLoadException(Me, exc)

End Try
End Sub

#End Region

In the Page_Load event, one of the first things you do is check the value contained within the Settings
hash. Remember from Table 12-2 that the Settings hash is similar to the Windows registry where you
can store key/value pairs. For example, you first check to see the view:

Dim EventView As String = CType(Settings(“eventview”), String)

This is the purpose of the Settings hash — it allows you to have unique values for each module’s
instance. This provides maximum code reuse to similar functions. In the Events module example, you
can specify different displays for events for each instance. This could be applied to any module in order
to provide maximum flexibility for your application. You can see throughout this method there are vari-
ous keys checked for this module to obtain values.

312

Chapter 12

16_595636 ch12.qxd 5/10/05 9:53 PM Page 312

Continuing through Listing 12-7, you can see some of the private methods covered earlier in this chapter
are called for displaying of date information. In addition, you also make a call to the EventsController in
order to bind to your Datalist. This is based on the value contained within your Settings(“eventview”)
key. If you’re in list view, “L,” then you will bind to the controller, and call the GetEvents method.
Remember just as before, you bring the data from the various layers starting with the physical database
provider to the BLL.

Dim objEvents As New EventController
::
::
lstEvents.DataSource = objEvents.GetEvents(ModuleId, _

Convert.ToDateTime(Common.Utilities.Null.NullDate), _
Convert.ToDateTime(Common.Utilities.Null.NullDate))

lstEvents.DataBind()

You’ll also notice the call to the Common.Utilities.Null.NullDate. This provides you with a null object of
the date type to pass to your method in order to return all events rather than just events within a speci-
fied range, as you did previously in this chapter.

We covered the basic structure of a view control for a DesktopModule, but there are a couple items we
need to deal with in order to complete the module. For instance, several times in the view control’s code-
behind class we made calls to values contained within a Settings hash. These values are going to be
configured within the edit control, which is used for configuring the settings for this specific module
instance. The Settings.ascx control was defined in the module definition in DotNetNuke for the Events
module (see Chapter 9).

Settings Control
Now you need to create a control that enables you to customize your module. In the Events module, this
will set the values contained in the Settings hash table. The keys you create are primarily for defining
the display of the module. You set options for defining whether to display events in a list format or a cal-
endar format.

Listing 12-8 reviews the user control for this module. This file is located in the Events project folder
called Settings.ascx.

Listing 12-8: The Settings User Control for the Events Module

<%@ Control language=”vb” CodeBehind=”Settings.ascx.vb” AutoEventWireup=”false”
Explicit=”True” Inherits=”DotNetNuke.Modules.Events.Settings” %>
<%@ Register TagPrefix=”dnn” TagName=”Label” Src=”~/controls/LabelControl.ascx” %>
<table cellspacing=”0” cellpadding=”2” summary=”Edit Events Design Table”
border=”0”>

<tr>
<td class=”SubHead” width=”175”><dnn:label id=”plView” runat=”server”

controlname=”optView” suffix=”:”></dnn:label></td>
<td valign=”bottom” width=”125”>

<asp:radiobuttonlist id=”optView” runat=”server” repeatdirection=”Horizontal”
cssclass=”NormalTextBox”>

(continued)

313

Developing Modules: The Presentation Layer

16_595636 ch12.qxd 5/10/05 9:53 PM Page 313

Listing 12-8: (continued)

<asp:listitem resourcekey=”List” value=”L”>List</asp:listitem>
<asp:listitem resourcekey=”cmdCalendar” value=”C”>Calendar</asp:listitem>

</asp:radiobuttonlist>
</td>

</tr>
<tr valign=”top”>

<td class=”SubHead” width=”175”><dnn:label id=”plWidth” runat=”server”
controlname=”txtWidth” suffix=”:”></dnn:label></td>

<td valign=”bottom” width=”125”><asp:textbox id=”txtWidth” runat=”server”
cssclass=”NormalTextBox” columns=”5”></asp:textbox></td>

</tr>
<tr valign=”top”>

<td class=”SubHead” width=”175”><dnn:label id=”plHeight” runat=”server”
controlname=”txtHeight” suffix=”:”></dnn:label></td>

<td valign=”bottom” width=”125”><asp:textbox id=”txtHeight” runat=”server”
cssclass=”NormalTextBox” columns=”5”></asp:textbox></td>

</tr>
</table>

You can see the various controls here to display data; most are standard ASP.NET controls. One excep-
tion to this is the use of the DNN Label control. By using DotNetNuke intrinsic controls you are able to
take advantage of localization within your modules.

In addition to the DNN Label control, you can see how to specify the Settings hash table values for the
view type. If you review Listing 12-7 you can see we checked the value of the Settings (“eventview”) to
determine in the view control how the events would be displayed. In the Settings.ascx control you can
see the form field optView, which has options for how to display the events in the module. You read
these values in your code-behind page for the Settings.ascx control and then pass the values to the
Settings hash, which you then use to check the view for the module.

Settings Control Code-Behind Class
If you look through the code-behind, you’ll notice this file is much smaller than the code-behind for the
view control because you’re primarily concerned with specifying how you want the module to look.
Listing 12-9 shows the class imports and the class definition in the Settings.ascx.vb file.

Listing 12-9: Defining the Settings Control for the Events Module

Imports DotNetNuke

Namespace DotNetNuke.Modules.Events
Public MustInherit Class Settings

Inherits Entities.Modules.ModuleSettingsBase

You can see here you inherit the Entities.Modules.ModuleSettingsBase class. This class is provided by
DotNetNuke and inherits the PortalModuleBase as discussed earlier (see Table 12-2), but it extends the
PortalModuleBase to include some additional properties. The ModuleSettingsBase class provides meth-
ods and properties specific to configuring values for the module instance. Table 12-3 reviews what this
class provides for your module development.

314

Chapter 12

16_595636 ch12.qxd 5/10/05 9:53 PM Page 314

Table 12-3: ModuleSettingsBase Class

Name Type Description

ModuleId Integer ID of a specific single Module instance.

TabModuleId Integer ID of the module container within a tab. For example, two
module instances in two different tabs could point to the
same Module ID allowing them to mirror data.

ModuleSettings Hashtable Configuration options that affect all instances of a module.

TabModuleSettings Hashtable Affects only a specific instance of a module. This allows
you to display the same information for a module, but in a
different way.

One item to clarify here is the difference between the two module IDs (ModuleID and TabModuleID)
and the two hash tables (ModuleSettings and TabModuleSettings). This is provided so you can use the
same data in two different module instances. So, for example, if you want to update the event view for
all instances of the same type of module, you would do so the following way:

Dim objModules As New Entities.Modules.ModuleController
objModules.UpdateModuleSetting(ModuleId, “eventview”, _

optView.SelectedItem.Value)

In Listing 12-10, you update the specific instance using the UpdateTabModuleSettings method. This
updates the view of all module containers pointing to the same data for a specific module, which is
identified by its Module ID.

Code-Behind Regions
Next in the Settings class the various code sections are broken down into code regions. You’ll notice
throughout DotNetNuke certain standards are applied for coding conventions. As a module developer
you should strive to emulate the DotNetNuke coding style for easier readability and management.

The first and only section in the Settings.ascx.vb file is the Base Method Implementations region (see
Listing 12-10). Here you have two methods, one method called LoadSettings to load settings from your
hash table, and another method called UpdateSettings to update the settings values in the hash table.

Listing 12-10: The Base Method Implementations of the Events Module
Settings.ascx.vb File

#Region “Base Method Implementations”
Public Overrides Sub LoadSettings()

Try
If (Page.IsPostBack = False) Then

If CType(TabModuleSettings(“eventview”), String) <> “” Then
optView.Items.FindByValue(CType(TabModuleSettings(“eventview”), _

String)).Selected = True

(continued)

315

Developing Modules: The Presentation Layer

16_595636 ch12.qxd 5/10/05 9:53 PM Page 315

Listing 12-10: (continued)

Else
optView.SelectedIndex = 1 ‘ calendar

End If
txtWidth.Text = _
CType(TabModuleSettings(“eventcalendarcellwidth”), String)

txtHeight.Text = _
CType(TabModuleSettings(“eventcalendarcellheight”), String)

End If
Catch exc As Exception ‘Module failed to load

ProcessModuleLoadException(Me, exc)
End Try

End Sub

Public Overrides Sub UpdateSettings()
Try

Dim objModules As New Entities.Modules.ModuleController
objModules.UpdateTabModuleSetting(TabModuleId, “eventview”, _

optView.SelectedItem.Value)
objModules.UpdateTabModuleSetting(TabModuleId, _

“eventcalendarcellwidth”, txtWidth.Text)
objModules.UpdateTabModuleSetting(TabModuleId, _

“eventcalendarcellheight”, txtHeight.Text)
Catch exc As Exception ‘Module failed to load
ProcessModuleLoadException(Me, exc)
End Try

End Sub
#End Region

That’s all it takes to configure the settings for your module. The next section covers the second edit con-
trol for editing events for the module.

Edit Control
Since you’re displaying events in your module, you need a way to add and update events in the
database in order to display them. Again, as in the view control you’re going to make a call to your BLL
in order to pass an update or insert SQL command to your physical provider.

Open the EditEvents.ascx control contained in the Events module project to look at the user interface for
adding your events data (see Listing 12-11).

Listing 12-11: Registering Controls for the EditEvents.ascx Control

<%@ Register TagPrefix=”dnn” TagName=”Label” Src=”~/controls/LabelControl.ascx” %>
<%@ Register TagPrefix=”Portal” TagName=”URL” Src=”~/controls/URLControl.ascx” %>
<%@ Register TagPrefix=”Portal” TagName=”Audit”
Src=”~/controls/ModuleAuditControl.ascx” %>
<%@ Register TagPrefix=”dnn” TagName=”TextEditor”
Src=”~/controls/TextEditor.ascx”%>
<%@ Control language=”vb” CodeBehind=”EditEvents.ascx.vb” AutoEventWireup=”false”
Explicit=”True” Inherits=”DotNetNuke.Modules.Events.EditEvents” %>

316

Chapter 12

16_595636 ch12.qxd 5/10/05 9:53 PM Page 316

You’ll notice you’re registering several DotNetNuke intrinsic controls. You did this with the label control
in your Settings class, but now you’re implementing several more in this file. Table 12-4 lists the controls
provided by DotNetNuke and explains their purpose.

Table 12-4: DotNetNuke Controls and Their Description

Control Location Description

Label Control <approot>/controls Provided by the DotNetNuke framework,
/LabelControl.ascx supports features provided by DNN such as

multiple languages based on user profile.

URL Control <approot>/controls Additional support for multi-language support
/URLControls.ascx of DotNetNuke based on profile.Portal structure,

security, and other DNN intrinsic information.

Audit <approot>/controls Provides information on who created the
/ModuleAuditControl.ascx information and the creation date.

Text Editor <approot>/controls Provides both a text-based and WYSIWYG
/TextEditor.ascx environment for editing text and HTML for your

module.

Address <approot>/controls Provides an address entry form; this is being
/Address.ascx used in the user registration within

DotNetNuke.

Dual List <approot>/controls Provides two lists for passing values from one
Control /DualListControl.ascx list to the other. An example of this control is

implemented in the security settings for a mod-
ule or page.

Help <approot>/controls Provides inline help for your controls. Supports
/Help.ascx localization.

Section Head <approot>/controls Provides expandable areas for sections of your
Control /SectionHeadControl.ascx module. This is implemented throughout Dot-

NetNuke.

Skin Control <approot>/controls A drop-down list of skins installed for a portal.
/SkinControl.ascx Primarily used in framework applications like

under the admin and host menus.

Skin Thumbnail <approot>/controls Generates a thumbnail image of the skin. You
Control /SkinThumbnail can view the functionality in the DotNetNuke

Control.ascx skins section under the Admin menu.

URL Tracking <approot>/controls Supports localization and click tracking.
Control /URLTrackingControl.ascx

As you can see from Table 12-4, DotNetNuke provides several controls, all of which you can use in your
own development. Because DotNetNuke is open source, you can easily open any of the pages of code to
find an implementation of these controls. This example covers controls specific to this module.

317

Developing Modules: The Presentation Layer

16_595636 ch12.qxd 5/10/05 9:53 PM Page 317

Now that the controls have been registered in the page and your code-behind declared, let’s continue
on with the rest of the control and remove some of the formatting parameters for readability (see
Listing 12-12).

Listing 12-12: The EditEvents.ascx Control

<asp:panel id=”pnlContent” runat=”server”>
<TABLE width=”600” summary=”Edit Events Design Table”>

<TR vAlign=”top”>
<TD>

<dnn:label id=”plTitle” runat=”server” controlname=”txtTitle”
suffix=”:”></dnn:label></TD>

<TD width=”450”>
<asp:textbox id=”txtTitle” runat=”server></asp:textbox>

<asp:requiredfieldvalidator id=”valTitle” runat=”server”
resourcekey=”valTitle.ErrorMessage” controltovalidate=”txtTitle”
errormessage=”Title Is Required”
display=”Dynamic”></asp:requiredfieldvalidator></TD>

</TR>
<TR vAlign=”top”>

<TD>
<dnn:label id=”plDescription” runat=”server”

controlname=”txtDescription” suffix=”:”></dnn:label></TD>
<TD width=”450”>

<dnn:texteditor id=”teDescription” runat=”server”></dnn:texteditor>
<asp:requiredfieldvalidator id=”valDescription” runat=”server”

resourcekey=”valDescription.ErrorMessage”
controltovalidate=”teDescription” errormessage=”Description Is
Required” display=”Dynamic”></asp:requiredfieldvalidator></TD>

</TR>
<TR vAlign=”top”>

<TD>
<dnn:label id=”plImage” runat=”server” controlname=”cboImage”

suffix=”:”></dnn:label></TD>
<TD width=”450”>

<portal:url id=”ctlImage” runat=”server” showtabs=”False”
showurls=”False” urltype=”F” showtrack=”False” showlog=”False”
required=”False”></portal:url></TD>

</TR>
<TR>

<TD>
<dnn:label id=”plAlt” runat=”server” controlname=”txtAlt”

suffix=”:”></dnn:label></TD>
<TD width=”450”>

<asp:textbox id=”txtAlt” runat=”server”></asp:textbox>
<asp:requiredfieldvalidator id=”valAltText” runat=”server”

resourcekey=”valAltText.ErrorMessage” controltovalidate=”txtAlt”
errormessage=”
Alternate Text Is Required”
display=”Dynamic”></asp:requiredfieldvalidator></TD>

</TR>
<TR>

<TD>
<dnn:label id=”plEvery” runat=”server” controlname=”txtEvery”

suffix=”:”></dnn:label></TD>

318

Chapter 12

16_595636 ch12.qxd 5/10/05 9:53 PM Page 318

<TD width=”450”>
<asp:textbox id=”txtEvery” runat=”server”></asp:textbox>
<LABEL style=”DISPLAY: none”

for=”<%=cboPeriod.ClientID%>”>Period</LABEL>
<asp:dropdownlist id=”cboPeriod” runat=”server”>

<asp:listitem value=””></asp:listitem>
<asp:listitem resourcekey=”Days” value=”D”>Day(s)</asp:listitem>
<asp:listitem resourcekey=”Weeks”

value=”W”>Week(s)</asp:listitem>
<asp:listitem resourcekey=”Months”

value=”M”>Month(s)</asp:listitem>
<asp:listitem resourcekey=”Years”

value=”Y”>Year(s)</asp:listitem>
</asp:dropdownlist></TD>

</TR>
<TR>

<TD class=”SubHead” width=”125”>
<dnn:label id=”plStartDate” runat=”server”

controlname=”txtStartDate” suffix=”:”></dnn:label></TD>
<TD width=”450”>

<asp:textbox id=”txtStartDate” runat=”server”
columns=”20”></asp:textbox>

<asp:hyperlink id=”cmdStartCalendar” runat=”server”
resourcekey=”Calendar”>Calendar</asp:hyperlink>

<asp:requiredfieldvalidator id=”valStartDate” runat=”server”
resourcekey=”valStartDate.ErrorMessage”

controltovalidate=”txtStartDate” errormessage=”
Start Date Is
Required” display=”Dynamic”></asp:requiredfieldvalidator>

<asp:comparevalidator id=”valStartDate2” runat=”server”
resourcekey=”valStartDate2.ErrorMessage”

controltovalidate=”txtStartDate” errormessage=”
Invalid start
date!” display=”Dynamic” type=”Date”

operator=”DataTypeCheck”></asp:comparevalidator></TD>
</TR>
<TR>

<TD class=”SubHead” width=”125”>
<dnn:label id=”plTime” runat=”server” controlname=”txtTime”
suffix=”:”></dnn:label></TD>

<TD width=”450”>
<asp:textbox id=”txtTime” runat=”server”></asp:textbox></TD>

</TR>
<TR>

<TD class=”SubHead” width=”125”>
<dnn:label id=”plExpiryDate” runat=”server”

controlname=”txtExpiryDate”
suffix=”:”></dnn:label></TD>

<TD width=”450”>
<asp:textbox id=”txtExpiryDate” runat=”server”></asp:textbox>
<asp:hyperlink id=”cmdExpiryCalendar” runat=”server”

resourcekey=”Calendar”>Calendar</asp:hyperlink>
<asp:comparevalidator id=”valExpiryDate” runat=”server”

resourcekey=”valExpiryDate.ErrorMessage”

(continued)

319

Developing Modules: The Presentation Layer

16_595636 ch12.qxd 5/10/05 9:53 PM Page 319

Listing 12-12: (continued)

controltovalidate=”txtExpiryDate” errormessage=”
Invalid expiry
date!” display=”Dynamic” type=”Date”

operator=”DataTypeCheck”></asp:comparevalidator></TD>
</TR>

</TABLE>
<P>

<asp:linkbutton id=”cmdUpdate” runat=”server” resourcekey=”cmdUpdate”
text=”Update”></asp:linkbutton>

<asp:linkbutton id=”cmdCancel” runat=”server” resourcekey=”cmdCancel”
text=”Cancel” causesvalidation=”False”></asp:linkbutton>

<asp:linkbutton id=”cmdDelete” runat=”server” resourcekey=”cmdDelete”
text=”Delete” causesvalidation=”False”></asp:linkbutton></P>

<portal:audit id=”ctlAudit” runat=”server”></portal:audit>
</asp:panel>

As you can see in Listing 12-12, the EditEvents form consists of several controls. Many are ASP.NET con-
trols, such as the linkbutton, textbox, validators, and others. In addition to the ASP.NET controls there
are several of the DotNetNuke controls covered in Table 12-4. The first control you encounter is the
DNN Label control:

<dnn:label id=”plTitle” runat=”server” controlname=”txtTitle”
suffix=”:”></dnn:label>

Initially you registered the control, and now it is placed into the form. Later in the code-behind you will
fill the text property of the control. Since the label is a DNN control, it performs like any other label
because it inherits from the ASP.NET control, but in addition you can associate information with the con-
trol, such as multiple languages from a resource file.

Further down the code is the TextEditor control:

<dnn:texteditor id=”teDescription” runat=”server”></dnn:texteditor>

By default DotNetNuke uses FreeTextBox, which is a freely available open source control that you can
use in your own applications. Since DotNetNuke uses a Provider Model for the TextEditor control, you
can easily use any third-party control.

Next in line are controls that were registered using the “portal” prefix. These controls are for tracking
activity within the portal. For example, when someone clicks on an event or any item in the portal, you
can use these controls to track how many and who clicked on them. Of course in order to track who
clicked on an item, users need to be logged on to the portal.

<portal:url id=”ctlImage” runat=”server” showtabs=”False” showurls=”False”
urltype=”F” showtrack=”False” showlog=”False” required=”False”></portal:url>

Some of the options allow you to show a log of clicks next to the item, tracking and other information for
tracking activity and display of the item. The control also integrates with DNN security allowing you to
display navigation of tab structure, but still maintain the security so only those who have permissions
for the resource see the information.

320

Chapter 12

16_595636 ch12.qxd 5/10/05 9:53 PM Page 320

Finally at the bottom of the page is an audit control for tracking activity of the module. The portal audit
control will provide you with information on who created the information and the created date.

<portal:audit id=”ctlAudit” runat=”server”></portal:audit>

Now let’s check out the code-behind to see how to work with the data and the controls. For the most
part you have dealt with displaying data from the BLL; now that you’re going to be adding and updat-
ing information, you’ll need to pass parameters to your stored procedures in SQL. Refer to Chapters 10
and 11 to see how this all comes together.

Edit Events Code-Behind Class
Now that we covered the front-end control that the user interacts with, let’s look at the code-behind file
and see how the class is structured. As before, you import the namespaces and define the class:

Imports DotNetNuke
Imports System.Web.UI.WebControls

Namespace DotNetNuke.Modules.Events
Public MustInherit Class EditEvents

Inherits Entities.Modules.PortalModuleBase

You’ll notice again you inherit from the PortalModuleBase class as you did in the view control. Since
this control is for adding data specific to your application, you’ll inherit the PortalModuleBase. Just
to be clear on the difference between this control and the Settings control, which inherits from the
ModuleSettingsBase class of DotNetNuke, the Settings control is specific to the operation of the module,
not the item data that is entered in tables that you create. The Settings data is stored within internal
tables native to DotNetNuke, so you need to inherit from the ModuleSettingsBase, which is focused on
this task. An Edit control is specific to your application so it inherits from the PortalModuleBase.

Edit Events Code Regions
Again, each section in the class is broken down into code regions for readability and organization. Let’s
review the regions specific to the EditEvents.ascx.vb file.

The first region is the Controls region, where you declare the controls you have created in your web
form in the EditEvents.ascx control (see Listing 12-13).

Listing 12-13: The Controls Region of the EditEvents.ascx.vb File

#Region “Controls”

Protected WithEvents pnlContent As System.Web.UI.WebControls.Panel
Protected plTitle As UI.UserControls.LabelControl
Protected WithEvents txtTitle As System.Web.UI.WebControls.TextBox
Protected WithEvents valTitle As _

System.Web.UI.WebControls.RequiredFieldValidator
Protected plDescription As UI.UserControls.LabelControl
Protected WithEvents teDescription As UI.UserControls.TextEditor
Protected WithEvents valDescription As _

System.Web.UI.WebControls.RequiredFieldValidator

(continued)

321

Developing Modules: The Presentation Layer

16_595636 ch12.qxd 5/10/05 9:53 PM Page 321

Listing 12-13: (continued)

Protected plImage As UI.UserControls.LabelControl
Protected WithEvents ctlImage As UI.UserControls.UrlControl
Protected plAlt As UI.UserControls.LabelControl
Protected WithEvents txtAlt As System.Web.UI.WebControls.TextBox
Protected WithEvents valAltText As _

System.Web.UI.WebControls.RequiredFieldValidator
Protected plEvery As UI.UserControls.LabelControl
Protected WithEvents txtEvery As System.Web.UI.WebControls.TextBox
Protected WithEvents cboPeriod As System.Web.UI.WebControls.DropDownList
Protected plStartDate As UI.UserControls.LabelControl
Protected WithEvents txtStartDate As System.Web.UI.WebControls.TextBox
Protected WithEvents cmdStartCalendar As _

System.Web.UI.WebControls.HyperLink
Protected WithEvents valStartDate As _

System.Web.UI.WebControls.RequiredFieldValidator
Protected WithEvents valStartDate2 As _

System.Web.UI.WebControls.CompareValidator
Protected plTime As UI.UserControls.LabelControl
Protected WithEvents txtTime As System.Web.UI.WebControls.TextBox
Protected plExpiryDate As UI.UserControls.LabelControl
Protected WithEvents txtExpiryDate As System.Web.UI.WebControls.TextBox
Protected WithEvents cmdExpiryCalendar As _

System.Web.UI.WebControls.HyperLink
Protected WithEvents valExpiryDate As _

System.Web.UI.WebControls.CompareValidator
‘tasks
Protected WithEvents cmdUpdate As System.Web.UI.WebControls.LinkButton
Protected WithEvents cmdCancel As System.Web.UI.WebControls.LinkButton
Protected WithEvents cmdDelete As System.Web.UI.WebControls.LinkButton
‘footer
Protected WithEvents ctlAudit As _

DotNetNuke.UI.UserControls.ModuleAuditControl
#End Region

As you can see from the code listing, most of the controls are ASP.NET controls as covered in Listing 12-12.
In addition, you can see where you declare the DotNetNuke controls covered earlier.

The label controls:

Protected plTitle As UI.UserControls.LabelControl
Protected plDescription As UI.UserControls.LabelControl
Protected plImage As UI.UserControls.LabelControl
Protected plEvery As UI.UserControls.LabelControl
Protected plTime As UI.UserControls.LabelControl
Protected plExpiryDate As UI.UserControls.LabelControl

The URL control:

Protected WithEvents ctlImage As UI.UserControls.UrlControl

322

Chapter 12

16_595636 ch12.qxd 5/10/05 9:53 PM Page 322

And the audit control:

Protected WithEvents ctlAudit As DotNetNuke.UI.UserControls.ModuleAuditControl

The next region is the Private Members region for storing an item ID value (see Listing 12-14). Because
you’re in the module’s edit control, you use this to add and update individual items. This variable is
used to store the primary key of the individual event contained in the Events table.

Listing 12-14: The Private Members Region of the Edit Control

#Region “Private Members”

Private itemId As Integer = -1

#End Region

The next region is the Event Handlers region for dealing with click events and the Page_Load event for
the control. We’ll start with the Page_Load event first and then describe what is happening in each event
for the Edit control of the Events module (see Listing 12-15).

Listing 12-15: The Events Handlers Region of the Edit Control -- Page Load Event

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As _
System.EventArgs) Handles MyBase.Load

Try
‘ Determine ItemId of Events to Update

If Not (Request.QueryString(“ItemId”) Is Nothing) Then
itemId = Int32.Parse(Request.QueryString(“ItemId”))
End If

‘this needs to execute always to the
‘client script code is registered in InvokePopupCal
cmdStartCalendar.NavigateUrl = _

CType(Common.Utilities.Calendar.InvokePopupCal(txtStartDate), String)
cmdExpiryCalendar.NavigateUrl = _

CType(Common.Utilities.Calendar.InvokePopupCal(txtExpiryDate), String)
‘ If the page is being requested the first time, determine if an
‘ event itemId value is specified, and if so populate page
‘ contents with the event details
If Page.IsPostBack = False Then

cmdDelete.Attributes.Add(“onClick”, “javascript:return confirm(‘“ & _
Localization.GetString(“DeleteItem”) & “‘);”)

If Not Common.Utilities.Null.IsNull(itemId) Then
‘ Obtain a single row of event information
Dim objEvents As New EventController
Dim objEvent As EventInfo = objEvents.GetEvent(itemId, ModuleId)
‘ Read first row from database
If Not objEvent Is Nothing Then

txtTitle.Text = objEvent.Title
teDescription.Text = objEvent.Description
ctlImage.FileFilter = glbImageFileTypes
ctlImage.Url = objEvent.IconFile

(continued)

323

Developing Modules: The Presentation Layer

16_595636 ch12.qxd 5/10/05 9:53 PM Page 323

Listing 12-15: (continued)

If Not objEvent.IconFile = “” Then
valAltText.Visible = False

Else
valAltText.Visible = True

End If
txtAlt.Text = objEvent.AltText
txtEvery.Text = objEvent.Every.ToString
If txtEvery.Text = “1” Then

txtEvery.Text = “”
End If
If objEvent.Period <> “” Then

cboPeriod.Items.FindByValue(objEvent.Period).Selected = _
True

Else
cboPeriod.Items(0).Selected = True

End If
txtStartDate.Text = objEvent.DateTime.ToShortDateString
txtTime.Text = objEvent.DateTime.ToShortTimeString
If objEvent.DateTime.ToString(“HH:mm”) = “00:00” Then

txtTime.Text = “”
End If
If Not Common.Utilities.Null.IsNull(objEvent.ExpireDate) Then

txtExpiryDate.Text = objEvent.ExpireDate.ToShortDateString
Else

txtExpiryDate.Text = “”
End If
ctlAudit.CreatedByUser = objEvent.CreatedByUser
ctlAudit.CreatedDate = objEvent.CreatedDate.ToString

Else ‘ security violation attempt to
‘ access item not related to this Module

Response.Redirect(NavigateURL(), True)
End If

Else
cmdDelete.Visible = False
ctlAudit.Visible = False
valAltText.Visible = False

End If
End If

Catch exc As Exception ‘Module failed to load
ProcessModuleLoadException(Me, exc)

End Try
End Sub

The first thing the Page_Load event does is to check the query string to determine if you’re working
with an existing item in the events table or if this is a new item.

Further down you check for a null value by using the Common.Utilities.Null.IsNull method and passing
it the itemID value. If the event ID is not null, you then instantiate the EventsController class and exe-
cute the GetEvent method. Remember, this GetEvent method is contained in the Business Logic Layer,
which then executes a call to the abstraction class, and eventually the physical provider that executes the
corresponding stored procedure within the SQL database.

324

Chapter 12

16_595636 ch12.qxd 5/10/05 9:53 PM Page 324

Dim objEvents As New EventController
Dim objEvent As EventInfo = objEvents.GetEvent(itemId, ModuleId)

Here you pass not only the itemID value to the stored procedure, but when you add a record you also
add a value for ModuleID. Remember, the ModuleID is being provided by the PortalModuleBase,
which exposes the current module instance’s ID to your class. The ID is a unique identifier provided by
DotNetNuke that is generated each time a module is placed in the page. This ID provides the developer
with a means to reuse modules, but have unique data for each instance.

Further down in the Page_Load event you can see another DotNetNuke-specific item, and that is where
you populate your audit control with the information on the user creating the new event item:

ctlAudit.CreatedByUser = objEvent.CreatedByUser
ctlAudit.CreatedDate = objEvent.CreatedDate.ToString

This provides tracking internally so you can see who performed what action in your module. All these
controls are totally optional for you to use in your module development.

Now let’s move on to button action events. Listing 12-16 contains click events for cmdCancel,
cmdDelete, and cmdUpdate link buttons.

Listing 12-16: Handling Linkbutton Events in the EditEvents Class

Private Sub cmdCancel_Click(ByVal sender As Object, ByVal e As EventArgs) _
Handles cmdCancel.Click
Try

Response.Redirect(NavigateURL(), True)
Catch exc As Exception ‘Module failed to load

ProcessModuleLoadException(Me, exc)
End Try

End Sub

Private Sub cmdDelete_Click(ByVal sender As Object, ByVal e As EventArgs) _
Handles cmdDelete.Click
Try

Dim objEvents As New EventController
objEvents.DeleteEvent(itemId)
objEvents = Nothing
‘ Redirect back to the portal home page
Response.Redirect(NavigateURL(), True)

Catch exc As Exception ‘Module failed to load
ProcessModuleLoadException(Me, exc)

End Try
End Sub

Private Sub cmdUpdate_Click(ByVal sender As Object, ByVal e As EventArgs) _
Handles cmdUpdate.Click
Try

Dim strDateTime As String
‘ Only Update if the Entered Data is Valid
If Page.IsValid = True Then

(continued)

325

Developing Modules: The Presentation Layer

16_595636 ch12.qxd 5/10/05 9:53 PM Page 325

Listing 12-16: (continued)

strDateTime = txtStartDate.Text
If txtTime.Text <> “” Then

strDateTime += “ “ & txtTime.Text
End If
Dim objEvent As New EventInfo
objEvent.ItemId = itemId
objEvent.ModuleId = ModuleId
objEvent.CreatedByUser = UserInfo.UserID.ToString
objEvent.Description = teDescription.Text
objEvent.DateTime = Convert.ToDateTime(strDateTime)
objEvent.Title = txtTitle.Text
If txtEvery.Text <> “” Then

objEvent.Every = Convert.ToInt32(txtEvery.Text)
Else

objEvent.Every = 1
End If
objEvent.Period = cboPeriod.SelectedItem.Value
objEvent.IconFile = ctlImage.Url
objEvent.AltText = txtAlt.Text
If txtExpiryDate.Text <> “” Then

objEvent.ExpireDate = Convert.ToDateTime(txtExpiryDate.Text)
End If
‘ Create an instance of the Event DB component
Dim objEvents As New EventController
If Common.Utilities.Null.IsNull(itemId) Then

‘ Add the event within the Events table
objEvents.AddEvent(objEvent)

Else
‘ Update the event within the Events table
objEvents.UpdateEvent(objEvent)

End If
objEvents = Nothing
‘ Redirect back to the portal home page
Response.Redirect(NavigateURL(), True)

End If
Catch exc As Exception ‘Module failed to load

ProcessModuleLoadException(Me, exc)
End Try

End Sub

The first event you’re handling in Listing 12-16 is the cmdCancel_Click event. Basically all you want to
do here is redirect the user back to where they started from, which is the default view of the module. In
this case it would be the View control we talked about earlier in the chapter. One thing you’ll notice here
is the use of NavigateURL, which is a function that returns a string for your module’s view page. The
NavigateURL function is provided by the DotNetNuke framework to provide navigation through your
module logic to load the appropriate controls based on the module’s key that you defined when you
first configured DotNetNuke to interface with the module (see Chapter 9). Another key feature to the
navigation methods provided by DotNetNuke is the support of friendly URLs (which we’ll talk about
later in this chapter), which eliminates query strings being passed in the URL and uses a directory struc-
ture for passing parameters.

326

Chapter 12

16_595636 ch12.qxd 5/10/05 9:53 PM Page 326

The second event is the cmdDelete_Click event. This event captures when the user deletes a specific
event from the listing. You make another call to your EventsController, and pass the ID of the event you
want deleted so eventually the stored procedure will be called and delete the event. After the event is
deleted you then redirect back to the initial view control of the module.

The final event is the cmdUpdate_Click event. This event handler contains a little more code than the
previous methods. Initially you create an instance of the EventController class, and populate the proper-
ties for an EventInfo object. These values are passed from the user controls contained in the web form on
the web control. Once the values are populated you check to see if this is an existing event by looking at
the item ID. If it’s an existing event you call the UpdateEvent method of the controller class. If you’re
adding an event you then call the AddEvent method of the EventController class. Finally, you use the
NavigateURL function and redirect to the initial view control of the module.

That completes the architectural review of a DotNetNuke module. Chapter 14 covers packaging up a
module for easy distribution in other DotNetNuke portals.

DotNetNuke Helper Functions
In the previous code samples you may have noticed several functions provided by the DotNetNuke core
framework to ease your module development. These helper functions consist of error handling and URL
navigation. This section provides some quick examples on what these functions do and how to utilize
them in your own modules. More detail is provided in Chapter 8 on the DotNetNuke API, but we’re
going to review common methods that were used in the examples in this chapter.

Error Handling
If you’ve been developing ASP.NET for any length of time, I’m sure you’ve seen the yellow error dump
on a web page when something goes wrong. This isn’t a very nice sight for your users to see, and some-
times it displays a little more information about your application than you would like. Sometimes you
don’t even realize there is a problem. You could write your own error handling routines, but with
DotNetNuke you don’t have to. The core framework provides module developers with the ability to
check a logged-on user’s security level, and display an appropriate error based on who is logged on. For
example, an administrator can be presented with a little bit more detail about what specifically erred
out, and an average user can just be presented with a friendly error informing them that something is
wrong. In addition, combined with the Logging Provider in DotNetNuke you can view a log of the
errors that occurred within a timeframe. This ensures you can see what has been happening with your
portal, and any errors your modules may have raised.

You probably have noticed in this chapter that the code examples call a method called
ProcessModuleLoadException. For example:

Try
‘some logic

Catch exc As Exception
ProcessModuleLoadException(Me, exc)

End Try

327

Developing Modules: The Presentation Layer

16_595636 ch12.qxd 5/10/05 9:53 PM Page 327

By using this method you raise the error to DotNetNuke built-in error handling. To view any errors,
logon as an admin or host level account, and select Admin ➪ Log Viewer from the menu options avail-
able. This brings up the Log Viewer screen. Errors will be presented with a red entry by default. Just
double-click on the entry to view the error information.

Navigation URLs
Another item covered in the sample code was the use of the NavigateURL and EditURL functions. These
provide two major functions: one is to load the appropriate control based on the key being passed to the
function, and the other is the support for friendly URLs in your module. Friendly URLs allow your
module to eliminate the need to pass query strings in the URL. By using friendly URLs, you make it eas-
ier for spiders to spider your site, and it is an overall easier method to display and remember URLs to
various pages in your site. For example, instead of using something like http://www.dotnetnuke.com
/default.aspx?tabid=233 to navigate to a page within a portal, friendly URLs would provide you
with http://www.dotnetnuke.com/tabid/233/default.aspx as a path to the page. You can find
more about the friendly URLs interface in Chapter 8.

Loading the Appropriate Control
NavigateURL provides you with the ability to load the appropriate control. This function is provided
by DotNetNuke.Common.Globals.NavigateURL, located within the Globals.vb file in the <approot>
/components/shared/ directory in the DotNetNuke solution. This method accepts a TabID, which is the
unique identifier of a page in your portal; ControlKey, which is the unique key you defined when you
configured your module definition — it identifies which user control to load for the module; and the
final parameter (AdditionalParameters), which is for additional parameters. The additional parameters
are a string array of the query string parameters you may need to pass in the URL. By using the
AdditionalParameters you easily implement friendly URLs for your module because DotNetNuke will
convert the string array to a directory structure to be displayed in the URLs.

For example, the following code snippet sets the NavigateURL property of a link button control using
the DotNetNuke.Common.Globals.NavigateURL method:

hypRegister.NavigateUrl = NavigateURL(PortalSettings.ActiveTab.TabID, “Edit”, _
“mid=” & objModules.GetModuleByDefinition(PortalSettings.PortalId, _
“User Accounts”).ModuleID, “UserId=” & objUserInfo.UserID)

You can see how you pass the ID of the currently active page to the URL, and the control you want to
load is the control with the Edit key. In addition, you pass several parameters for the control such as the
Module ID and current User ID.

EditURL is another function for building navigation for your module, in addition to the features pro-
vided by the NavigateURL method, and is provided by the PortalModuleBase. This method does not
accept a Tab ID value, because it assumes it is being used for the module instance currently in use. For
example, if you list a record set and you want to edit a particular item, you would pass the key of
ItemID, and then the value. The EditURL would pass the information to the Edit control:

328

Chapter 12

16_595636 ch12.qxd 5/10/05 9:53 PM Page 328

<asp:HyperLink id=”editLink” NavigateUrl=’<%#
EditURL(“ItemID”,DataBinder.Eval(Container.DataItem,”ItemID”)) %>’ Visible=”<%#
IsEditable %>” runat=”server”><asp:Image id=”editLinkImage”
ImageUrl=”~/images/edit.gif” Visible=”<%# IsEditable %>” AlternateText=”Edit”
runat=”server” /></asp:HyperLink>

In this example, you’re listing the events in a view user control and displaying an edit link to the user if
he or she has edit permissions using the IsEditable (see Table 12-2) Boolean value.

Summary
This chapter finalized our series on module development and architecture. In Chapter 10 you developed
your physical provider class, which provides methods to expose your stored procedures in the database.
From there you moved on to creating an abstraction class, and finally exposing the result set of records
as a collection of objects from your Business Logic Layer (see Chapter 11).

In this chapter you combined those classes and then bound them to controls in your module controls.
Modules consist of several types of controls. The more common ones are the view control, for the first
initial view of a module; the settings control, for configuring properties of a module instance; and the
edit control, for editing information specific to your business logic for the module application.

Finally, you learned the various helper functions that you can use in your own projects to reduce the
amount of custom code.

This should provide you with enough information to begin developing your own module for
DotNetNuke. In Chapter 14, you learn how to package up these modules for distribution in other
DotNetNuke portals.

329

Developing Modules: The Presentation Layer

16_595636 ch12.qxd 5/10/05 9:53 PM Page 329

16_595636 ch12.qxd 5/10/05 9:53 PM Page 330

Skinning DotNetNuke

The ability to skin DotNetNuke was introduced in version 2 of the application and was a much-
anticipated addition. The term skinning refers to an application’s ability to change the look of the
design by a setting in the application. This allows for the separation of the application logic from
the user interface or object abstraction. As you learned in previous chapters, DotNetNuke utilizes
a three-tier object-oriented design approach, with the user interface segmented as its own tier. This
is what allows skinning to work and the application to be able to present a unique feel depending
on the parameters passed to the page. This chapter looks at the finer points of skinning and pro-
vides you with the tools to start building your own skins for DotNetNuke.

DotNetNuke utilizes templates to accomplish this because they allow for the separation of the pre-
sentation and layout attributes from the application logic required to display content to the user.
We studied various approaches to allow this functionality and have created a solution that will
allow both developers and designers independence when implementing DotNetNuke sites. This
allows for faster deployment times and, more importantly, reduced expense with getting your por-
tal functional and performing its intended purpose.

The abstraction of the user interface elements from a page can be accomplished using different
methodologies. The method chosen includes some degree of parsing to merge the presentation
with the business logic. Therefore, defining where, when, and how this parsing will take place
becomes critical to the success of the entire solution.

The use of tokens or identifiers in the user interface files to represent dynamic functionality is a
popular technique employed in many skinning solutions. DotNetNuke utilizes this approach in its
skinning engine solution — as the page is processed the token is replaced to the proper skin object
or control for the function the token identifies. This is accomplished when you install the skin into
the application, which we will discuss later.

DotNetNuke allows you to create skins using your favorite editor, which gives you as a skin
developer a good amount of flexibility — you only need to follow the rules for creating a skin;
the tool you use to create it is up to you. You can either create an .ascx or .html skin. The type you

17_595636 ch13.qxd 5/10/05 10:03 PM Page 331

create depends upon your choice of editor and the set of rules you choose to follow. Allowing you to cre-
ate the skins in HTML or ASP.NET was a conscious choice made to allow for the most flexibility with
creating these skins and to help bridge the gap between designers and developers. The Core Team real-
izes there are still many more HTML developers in the world than ASP.NET developers, so allowing
skins to be created in HTML allows many more individuals to utilize this functionality of the application
without having to learn new skills other than how to place the tokens within your skin design. Now that
you have a little history of why the engine was architected, let’s look at the finer points of skinning.

File Organization
Skins files must meet certain conditions before they will install into the application. Once the require-
ments are met you can upload a compressed zip file containing your skin utilizing the built-in File
Manager, and the application will convert your files for use as a portal skin. Skins may be applied at
several levels within the application; you can define a skin to be host-, portal-, or page-level, depending
upon your needs. Once you upload your skin the application will create a directory for the files under
the Portals/_default/Skins directory. If you look at the file structure of the application’s root you will
also notice there is a Containers directory where any containers you create for your skins will be stored.
These file directories are mapped to their corresponding skin ID, which uniquely identifies the skin in
the application. These settings are stored in the Skins table and allow the application to correctly deter-
mine the skin to load at runtime.

Processing Pages and Loading Skins
The application uses a single page to process the functionality of displaying information to the user,
Default.aspx. This page is the container for all the controls and skin elements the application needs to
effectively serve its purpose of displaying the content to the portal user. You could refer to Default.apsx
as a placeholder for the other information because its content is very basic if you view the source of the
page from your IDE. It includes a placeholder for the content to be loaded and some error handling for
the application. As you can see in Listing 13-1, there is a lot more that will be injected in the page than it
would appear from looking at the code for the page.

Listing 13-1: Default.aspx Source Code

<%@ Page CodeBehind=”Default.aspx.vb” language=”vb” AutoEventWireup=”false”
Explicit=”True” Inherits=”DotNetNuke.Framework.CDefault” %>
<%@ Register TagPrefix=”dnn” Namespace=”DotNetNuke.Common.Controls”
Assembly=”DotNetNuke” %>
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>
<HTML>

<HEAD id=”Head”>
<TITLE>

<%= Title %>
</TITLE>
<%= Comment %>
<META NAME=”DESCRIPTION” CONTENT=”<%= Description %>”>
<META NAME=”KEYWORDS” CONTENT=”<%= KeyWords %>”>
<META NAME=”COPYRIGHT” CONTENT=”<%= Copyright %>”>

332

Chapter 13

17_595636 ch13.qxd 5/10/05 10:03 PM Page 332

<META NAME=”GENERATOR” CONTENT=”<%= Generator %>”>
<META NAME=”AUTHOR” CONTENT=”<%= Author %>”>
<META NAME=”RESOURCE-TYPE” CONTENT=”DOCUMENT”>
<META NAME=”DISTRIBUTION” CONTENT=”GLOBAL”>
<META NAME=”ROBOTS” CONTENT=”INDEX, FOLLOW”>
<META NAME=”REVISIT-AFTER” CONTENT=”1 DAYS”>
<META NAME=”RATING” CONTENT=”GENERAL”>
<style id=”StylePlaceholder” runat=”server”></style>
<asp:placeholder id=”CSS” runat=”server”></asp:placeholder>
<asp:placeholder id=”FAVICON” runat=”server”></asp:placeholder>
<script src=”<%= Page.ResolveUrl(“js/dnncore.js”) %>”></script>

</HEAD>
<BODY ID=”Body” runat=”server” ONSCROLL=”__dnn_bodyscroll()” BOTTOMMARGIN=”0”

LEFTMARGIN=”0”
TOPMARGIN=”0” RIGHTMARGIN=”0” MARGINWIDTH=”0” MARGINHEIGHT=”0”>
<noscript></noscript>
<dnn:Form id=”Form” runat=”server” ENCTYPE=”multipart/form-data”

style=”height:100%;>
<asp:Label ID=”SkinError” Runat=”server” CssClass=”NormalRed”

Visible=”False”></asp:Label>
<asp:placeholder id=”SkinPlaceHolder” runat=”server” />
<INPUT ID=”ScrollTop” runat=”server” NAME=”ScrollTop”

TYPE=”hidden”>
<INPUT ID=”__dnnVariable” runat=”server” NAME=”__dnnVariable”

TYPE=”hidden”>
</dnn:Form>

</BODY>
</HTML>

So how does all this work? When a URL is requested and the user enters the application the request is
inspected and the proper skin is determined from the database tables. Once the proper skin is identified
the user controls are injected based on the definitions in the skin. The logic that allows this functionality
is defined in the Admin/Skins/skin.vb file. Listing 13-2 looks at the logic that allows the skin to be
determined and loaded.

Listing 13-2: Skin.vb Init_Page Directives

Private Sub Page_Init(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Init

‘
‘ CODEGEN: This call is required by the ASP.NET Web Form Designer.
‘
InitializeComponent()

‘ set global page settings
InitializePage()

‘ process the current request
ManageRequest()

‘ load skin control
Dim ctlSkin As UserControl
Dim objSkins As New UI.Skins.SkinController

(continued)

333

Skinning DotNetNuke

17_595636 ch13.qxd 5/10/05 10:03 PM Page 333

Listing 13-2: (continued)

‘ skin preview
If (Not Request.QueryString(“SkinSrc”) Is Nothing) Then

PortalSettings.ActiveTab.SkinSrc = _
objSkins.FormatSkinSrc(QueryStringDecode(Request.QueryString(“SkinSrc”)) & “.ascx”,
PortalSettings)

ctlSkin = LoadSkin(PortalSettings.ActiveTab.SkinSrc)
End If

‘ load assigned skin
If ctlSkin Is Nothing Then

If IsAdminControl() = True Or PortalSettings.ActiveTab.IsAdminTab _
Then

Dim objSkin As UI.Skins.SkinInfo
objSkin = objSkins.GetSkin(SkinInfo.RootSkin, _

PortalSettings.PortalId, SkinType.Admin)
If Not objSkin Is Nothing Then

PortalSettings.ActiveTab.SkinSrc = _
objSkins.FormatSkinSrc(objSkin.SkinSrc, PortalSettings)

Else
PortalSettings.ActiveTab.SkinSrc = “”

End If
ElseIf PortalSettings.ActiveTab.SkinSrc <> “” Then

PortalSettings.ActiveTab.SkinSrc = _
objSkins.FormatSkinSrc(PortalSettings.ActiveTab.SkinSrc, PortalSettings)

End If

If PortalSettings.ActiveTab.SkinSrc <> “” Then
ctlSkin = LoadSkin(PortalSettings.ActiveTab.SkinSrc)

End If
End If

‘ error loading skin - load default
If ctlSkin Is Nothing Then

‘ could not load skin control - load default skin
If IsAdminControl() = True Or PortalSettings.ActiveTab.IsAdminTab _

Then
PortalSettings.ActiveTab.SkinSrc = Common.Globals.HostPath & _

SkinInfo.RootSkin & glbDefaultSkinFolder & glbDefaultAdminSkin
Else

PortalSettings.ActiveTab.SkinSrc = Common.Globals.HostPath & _
SkinInfo.RootSkin & glbDefaultSkinFolder & glbDefaultSkin

End If
ctlSkin = LoadSkin(PortalSettings.ActiveTab.SkinSrc)

End If

‘ set skin path
PortalSettings.ActiveTab.SkinPath = _

objSkins.FormatSkinPath(PortalSettings.ActiveTab.SkinSrc)

‘ set skin id to an explicit short name to reduce page payload and make
it standards compliant

ctlSkin.ID = “dnn”

334

Chapter 13

17_595636 ch13.qxd 5/10/05 10:03 PM Page 334

‘ add CSS links
ManageStyleSheets(False)

‘ add Favicon
ManageFavicon()

‘ add skin to page
SkinPlaceHolder.Controls.Add(ctlSkin)

‘ add CSS links
ManageStyleSheets(True)

End Sub

As you can see in Listing 13-2, you first call the ManageRequest function, which determines the URL of
the requesting user and information about who is requesting the resource. This not only allows you to
determine the URL of the request, but also allows you to determine whether the user should have access
to the page they are requesting. After learning the identity of the user and which resource they are
requesting, you can determine the skin you need to use for this request from the database. So you create
the new object ctlSkin and determine the skin you need to load for the page. Then you look at the other
attributes and load the proper style sheet and Icon, if they are defined, and finally bind the skin user
control and attributes to the page the user has requested. This is what allows DotNetNuke to perform
dynamic re-allocation of the application’s look on the fly. You should note there is a performance hit
with these DB calls and allowing the portal to utilize this dynamic skinning solution, as there is with any
application that can change its appearance on the fly, but it is one of the killer features DotNetNuke con-
tains and more than worth the additional overhead the process requires.

Packaging Skins and Containers
Now that you understand the process of getting skin bound to the proper page, let’s look at the different
parts of a skin package. The package is a compilation of the files and definitions you will use to contain
the files and tell DotNetNuke to process your skin when you install it into your application instance.
A skin or container package can contain the following file types:

❑ *.htm,*.html files: These files can contain the layout representing how you want the various
skin objects to be located in your design. These files will be converted to *.ascx files upon instal-
lation to the application.

❑ *.ascx files: These are skin definition user controls that are precompiled in the format the
skinning engine requires.

❑ *.css files: These files contain the style sheet definitions you will use to define the files in your
skin or container.

❑ *.gif, *.jpeg, *.jpg, *.png: These file extensions are used in support of the graphics files included
in your skin.

❑ *.* Other files: You can use any other resource files in your package, but these must be of an
allowed file type in the host allowed file settings on the Host Settings page.

335

Skinning DotNetNuke

17_595636 ch13.qxd 5/10/05 10:03 PM Page 335

A package can contain multiple skins or containers. This allows you to create complementing skins for a
site in one package. Since the layout will allow for various panes that contain the module content at run-
time, this is a powerful feature because you may not want the same layout for all pages in a site, but you
will probably want common graphics and defined styles throughout the same site. This ability of pack-
aging multiple skins and containers allows you to install all of the skins for a portal in one installation.

A skin package should make use of a manifest file to identify the various files and elements to be
included in the skin. Including this file allows you to combine all the files into one package and give the
application the needed instructions for processing the skin to your specifications. Although the manifest
file adds some overhead to the skin creation process, it does greatly enhance the abilities of the installa-
tion process and allows greater control in a single step. We will discuss the finer points of creating mani-
fest files later in this chapter because this is a very important control mechanism for controlling the
installation of your skins.

Creating Your Skin
You have two methods for creating your skin. The method you choose will depend upon your comfort
level with the technology and your personal preference. Skins can be created using HTML, or if you pre-
fer, you can create *.ascx skins with VS.NET. This allows you to develop your skin in a comfortable envi-
ronment and provides flexibility while creating skins. If you are more of a designer who has developed
traditional web sites in the past, you may prefer creating your skins in HTML using your favorite editor,
but if you are more of a programmer type, you may prefer to use ASP.NET code and develop your skin
with Visual Studio. Both these methods are basically the same except you will use the tokens when
developing in HTML and you will utilize the user controls when creating your skin. Of course the file
extension will change depending upon your choice of methods.

At a minimum you will want to develop at least two skins for each package, one to display to your users
and another to display the administrative modules discussed in Chapters 4 and 5. The reason for this is
that the user content areas will likely need multiple panes to properly lay out the content as your busi-
ness needs require, but the administrative areas will likely only display a single module per page, so
these two layouts will need to be architected differently to adequately serve the purpose of the area.

There are several different steps to creating a skin. The order in which you perform these steps is not
important, but we find the following a valid method to get everything accomplished and your skin into
production.

To simplify the development of skin files as well as expedite the packaging process later, it is recom-
mended that you use the following organizational folder structure:

\Skins
\SkinName (this is the package you are developing)

... (this is where you create the skin package zip files for deployment)
\containers (this is a static name to identify the container files for the skin package)
... (this will contain all resource files related to your containers)

\skins (this is a static name to identify the skin files for the skin package
... (this will contain all resource files related to your skins)

336

Chapter 13

17_595636 ch13.qxd 5/10/05 10:04 PM Page 336

This provides an easy structure to develop your skins and you will find this structure also simplifies
preparing your package for deployment and installation into your portal. The free-form nature of skin-
ning provides you a level of creative freedom within designing your skins. Designers may wish to create
the initial site designs as full graphical images and then slice the images to meet their needs after the
concept is mature. One thing to be aware of when creating skins is that you need to include all user
interface elements in your design. This includes static elements such as graphics and text, and it should
also include active elements such as Login links, a navigation/menu system, and the other skin objects
required for DotNetNuke to adequately display your content to your users.

This is where you need to be aware of the technical issues that will arise in terms of how to most effec-
tively divide the graphical elements into the HTML representation you need. HTML layout is very dif-
ferent from free-flow graphics, and the translation from a graphical image to an HTML representation
will determine the layout of the final design. Decisions such as what resolution you want to target your
site for will need to be made at this stage. If you want the site to remain fixed regardless of resolution of
the user’s browser or if the design should adapt to the resolution, you should decide these items and
make adjustments to your design based on those decisions. Several example skins are included in the
download that show the differences between fixed-width skins and full-width skins, so you can see the
differences between these two approaches.

Now that you have your design completed, you will need to actually build the skin. As mentioned ear-
lier, you can use any HTML editor, Visual Studio, or if you prefer, even your favorite text editor to build
the skin for your design. The one thing to remember is the HTML in your skin must be well formed or
the process will fail. This means you must ensure you close any HTML tags you open, including image
tags. Image tags do not normally have closing tags so you should include the trailing / after the image
content and before you end the tag. Most modern HTML editors will handle the process of ensuring tags
are closed for you, but you should still double-check your work to make sure a bug is not introduced
into your skin with a missing tag.

This brings us to the location of images and support files to be used in your skin. Normally you will want
to include your support files within the same folder as the rest of your skin elements, but this is not a
requirement and you can place them in any folder you wish, but care must be taken to ensure the paths
will remain valid after the skin upload process. As part of the upload process the skinning engine will add
an explicit path to your images for you. This is to help with the performance of your skin during runtime.
The skinning image will automatically append a path of /Portals/_default/YourSkinName/ to your
image paths you have specified. One thing to watch out for with this when you are building the content
for your site is that if these paths change between development and production, your image paths will be
incorrect and the image will not show properly.

An example of when this can happen is when you are building a site on your local machine in a virtual
directory of http://localhost/VirtualDirectory and then you decide to move to production to a
location of http://www.YourDomain.com. The easiest way to make this move is to back up your local
database, then restore it to your production database, ftp your files to your production system, and
make the appropriate changes to the Portal Alias and web.config file. But what you will find when you
move the site to production is that the image paths will no longer work. If you run into this issue you
have two methods to correct it. You can install the skin again, effectively overwriting the original skin, or
you can choose to directly edit your skin file and correct the image paths manually. The best thing is to
take these types of items into account before you start building a development site and plan accordingly.

337

Skinning DotNetNuke

17_595636 ch13.qxd 5/10/05 10:04 PM Page 337

Now that you have your design and a good idea of how your skin will be architected, you need to add
the skin objects to the proper location in your skin file. This is so DotNetNuke will know where to insert
the various content panes, portal elements, and navigation objects. Depending on the method you chose
to create your skin, this process will change to meet the method. If you are using ASCX skins, then you
will need to specify the @Register and the actual user control tag in your skin. For example, <dnn:Login
runat=”server” id=”dnnlogin”> will insert the login user control in the section of your skin where you
specify the control. If you are using HTML skins, then you will simply need to include the token for the
accompanying skin element. So for HTML skins you will simply add [Login] in the location you would
like the login control to appear and the engine will replace it with the actual control when the skin is
parsed during upload. Each of the different skin objects has their own unique functions, and you must
understand the use of each to build a functional skin. Table 13-1 lists each of these objects and describes
their purpose, as well as provides an example of their use in each of the two methods.

Table 13-1: Skin Objects

Token Control Description

[SOLPARTMENU] < dnn:SolPartMenu runat=”server” Displays the hierarchical naviga-
id=”dnnSolPartMenu”> tion menu (formerly [MENU]).

[LOGIN] < dnn:Login runat=”server” Dual state control — displays
id=”dnnLogin”> “Login” for anonymous users and

“Logout” for authenticated users.

[BANNER] < dnn:Banner runat=”server” Displays a random banner ad.
id=”dnnBanner”>

[BREADCRUMB] < dnn:Breadcrumb runat=”server” Displays the path to the currently
id=”dnnBreadcrumb”> selected tab in the form of Page-

Name1 > PageName2 > PageName3.

[COPYRIGHT] < dnn:Copyright runat=”server” Displays the copyright notice for
id=”dnnCopyright”> the portal.

[CURRENTDATE] < dnn:CurrentDate runat=”server” Displays the current date.
id=”dnnCurrentDate”>

[DOTNETNUKE] < dnn:DotNetNuke runat=”server” Displays the Copyright notice for
id=”dnnDotnetNuke”> DotNetNuke (not required).

[HELP] < dnn:Help runat=”server” Displays a link for Help, which will
id=”dnnHelp”> launch the user’s e-mail client and

send mail to the portal Administrator.

[HOSTNAME] < dnn:HostName runat=”server” Displays the Host Title linked to
id=”dnnHostName”> the Host URL.

[LINKS] < dnn:Links runat=”server” Displays a flat menu of links
id=”dnnLinks”> related to the current tab level and

parent node. This is useful for search
engine spiders and robots.

[LOGO] < dnn:Logo runat=”server” Displays the portal logo.
id=”dnnLogo”>

338

Chapter 13

17_595636 ch13.qxd 5/10/05 10:04 PM Page 338

Token Control Description

[PRIVACY] < dnn:Privacy runat=”server” Displays a link to the Privacy
id=”dnnPrivacy”> Information for the portal.

[SIGNIN] < dnn:Signin runat=”server” Displays the signin control for
id=”dnnSignin”> providing your username and

password.

[TERMS] < dnn:Terms runat=”server” Displays a link to the Terms and
id=”dnnTerms”> Conditions for the portal.

[USER] < dnn:User runat=”server” Dual state control — displays a
id=”dnnUser”> “Register” link for anonymous users

or the user’s name for authenticated
users.

[CONTENTPANE] <div runat=”server” Injects a placeholder for module
id=”ContentPane”> content.

These are the skin objects available for use in your skin creation, and there are also some additional
objects available for use in the creation of containers. You can place these objects anywhere in your skin
and control the placement of the portal elements. We should note that not all these elements are required,
but you should choose the elements you need to accomplish your purpose. Each skin must have at least
one content pane, and it must be identified as the content pane or the modules will not display correctly.

Quite a few attributes are also available for use in the skin creation process. These attributes will be
defined in the skin.xml or the manifest file we mentioned earlier in the chapter. This file is where you
will tell DotNetNuke how you want to utilize the various skin objects. For example, you may want your
navigation menu to display horizontally in your skin; this setting will be set in the skin.xml file so the
engine will know how to properly insert the menu into the skin. Table 13-2 lists the attributes available
to you for use in the manifest file for the skin objects.

Table 13-2: Skin Attributes

Token Attribute Default Description

[SOLPARTMENU] separatecss true CSS defined in a style sheet (values:
true, false)

backcolor #333333 Background color

forecolor white Forecolor of menu item when selected

highlightcolor white Color of top and left border to give a
highlight effect

iconbackground #333333 Background color in area where icon is
color displayed

Table continued on following page

339

Skinning DotNetNuke

17_595636 ch13.qxd 5/10/05 10:04 PM Page 339

Token Attribute Default Description

selectedb Color of border surrounding selected
ordercolor menu item

selectedcolor #CCCCCC Background color of menu item when
selected

selectedforecolor white Forecolor of menu item when selected

display horizontal Determines how the menu is displayed,
horizontal or vertical (values: vertical,
horizontal)

menubarheight 16 Menu bar height in pixels

menuborderwidth 1 Menu border width in pixels

menuitemheight 21 Menu item height in pixels

forcedownlevel false Flag to force the downlevel menu to
display (values: true, false)

moveable false Flag to determine if menu can be
moved (values: true, false)

iconwidth 0 Width of icon column in pixels

Menueffects dimgray Color of the shadow
shadowcolor

menueffectsmouse 500 Number of milliseconds to wait until
outhidedelay menu is hidden on mouse out

(0 = disable)

mouseouthide 1 Number of milliseconds to wait until
delay menu is hidden on mouse out

(0 = disable)

menueffectsmouse Highlight Adjusts effect when mouse moves
overdisplay over menu bar item (values: Outset,

Highlight, None)

menueffects true Makes menu expand on mouse-over
mouseoverexpand (unlike any menu found within the

Windows environment) (values: true,
false)

menueffectsstyle filter:progid: IE-only property for SubMenu styles
DXImage and transitions
Transform
.Microsoft
.Shadow(color
=’DimGray’,
Direction=135,
Strength=3) ;

340

Chapter 13

17_595636 ch13.qxd 5/10/05 10:04 PM Page 340

Token Attribute Default Description

fontnames Arial

fontsize 12

fontbold false

Menueffects 3 Determines how many pixels the
shadowstrength shadow extends

Menueffects None Determines which direction the
menutransition shadow will fall (values: None,

AlphaFade, AlphaFadeBottomRight,
Barn, Blinds, Checkerboard, Constant-
Wave, Fade, GradientWipe, Inset, Iris,
RadialWipe, Random, RandomBars,
Slide, Spiral, Stretch, Strips, Wave,
Wheel, Zigzag)

menueffectsmenu 0.3 Number of seconds the transition
transitionlength will take

Menueffects Lower Right Determines which direction the
shadowdirection shadow will fall (values: None, Top,

Upper Right, Right, Lower Right, Bot-
tom, Lower Left, Left, Upper Left)

menucontainer MainMenu_ Menu Container CSS Class
cssclass Menu

Container

menubarcssclass MainMenu_ Menu Bar CSS Class
MenuBar

menuitemcssclass MainMenu_ Menu Item CSS Class
MenuItem

menuiconcssclass MainMenu_ Menu Icon CSS Class
MenuIcon

menuitems MainMenu_ Menu Item CSS Class for mouse-over
elcssclass MenuItemSel

menubreakcssclass MainMenu_ Menu Break CSS Class
MenuBreak

submenucssclass MainMenu_ SubMenu CSS Class
SubMenu

menuarrowcssclass MainMenu_ Menu Arrow CSS Class
MenuArrow

menuroot MainMenu_ Menu Root Arrow CSS Class
arrowcssclass MenuRoot

Arrow

Table continued on following page

341

Skinning DotNetNuke

17_595636 ch13.qxd 5/10/05 10:04 PM Page 341

Token Attribute Default Description

forcefullmenulist false Displays the full menu as an indented
list of normal hyperlinks (like a
sitemap) {true|false}

useskinpath false Use arrow images located in the skin
arrowimages and not those in the /images folder

{true|false}

userootbread true Use a breadcrumb arrow to identify
crumbarrow the root tab that is listed in the bread-

crumb ArrayList {true|false}

usesubmenu false Use a breadcrumb arrow to identify
breadcrumbarrow the submenu tabs that are listed in the

breadcrumb ArrayList {true|false}

Rootbread Image used for root-level menu
crumbarrow breadcrumb arrows – i.e., file.gif

submenubread Image used for submenu menu
crumbarrow breadcrumb arrows – i.e., file.gif

usearrows Use arrows to indicate child submenus

downarrow menu_ Arrow image used for downward-
down.gif facing arrows indicating child

submenus

rightarrow bread Arrow image used for right-facing
crumb.gif arrows indicating child submenus

level Root Root level of the menu in relationship
to the current active tab
{Root|Same|Child}

rootonly false Indicator to turn off submenus
{true|false}

rootmenuitem CSS class used for root menu items
breadcrumb when they are found in the
cssclass breadcrumb ArrayList

submenuitem CSS Class used for submenu items
breadcrumb when they are found in the
cssclass breadcrumb ArrayList

Rootmenuitem CSS class used for root menu items
cssclass

rootmenuitem CSS class used for root menu items
activecssclass when they are the active tab

submenuitem CSS class used for submenu items
activecssclass when they are the active tab

342

Chapter 13

17_595636 ch13.qxd 5/10/05 10:04 PM Page 342

Token Attribute Default Description

rootmenuitem CSS class used for root menu items
selectedcssclass when they are moused-over

submenuitem CSS Class used for submenu items
selectedcssclass when they are moused-over

separator The separator between root-level
menu items. This can include custom
skin images, text, and HTML (i.e.,
<![CDATA[]]>)

separatorcssclass CSS class used for the root-level menu
item separator

Rootmenuitem HTML text added to the beginning of
lefthtml the root menu items

rootmenuitem HTML text added to the end of the
righthtml root menu items

Submenuitem HTML text added to the beginning of
lefthtml the submenu items

Submenuitem HTML text added to the end of the
righthtml submenu items

tooltip Tooltips added to the menu items.
These come from the tab object proper-
ties, which are filled from the tabs
table {Name|Title|Description}

leftseparator The separator used just before a root-
level menu item. A use for this might be
a left edge of a tab image, for example.

rightseparator The separator used just after a root-
level menu item. A use for this might
be a right edge of a tab image, for
example.

Leftseparator The separator used just before an
active active root-level menu item

Rightseparator The separator used just before an
active active root-level menu item

leftseparator The separator used just before a root-
breadcrumb level menu item found in the bread-

crumb ArrayList

Table continued on following page

343

Skinning DotNetNuke

17_595636 ch13.qxd 5/10/05 10:04 PM Page 343

Token Attribute Default Description

rightseparator The separator used just before a root-
breadcrumb level menu item found in the bread-

crumb ArrayList

leftseparator CSS class used for leftseparator
cssclass

rightseparator CSS class used for rightseparator
cssclass

leftseparator CSS class used for leftseparatoractive
activecssclass

rightseparator CSS class used for rightseparatoractive
activecssclass

leftseparatorbread CSS class used for
crumbcssclass leftseparatorbreadcrumb

rightseparator CSS class used for rightseparator-
breadcrumbcssclass breadcrumb

menualignment Left Alignment of the menu within the
menu bar {Left|Center|Right|Justify}

cleardefaults false If true, this value will clear/empty the
default color settings of the menu so
that they can be left empty and not just
overridden with another value

[LOGIN] Text Login The text of the login link

CssClass OtherTabs The style of the login link

LogoffText Logoff The text for the logoff link

[BANNER] BorderWidth 0 The border width around the banner

[BREADCRUMB] Separator bread The separator between breadcrumb
crumb.gif links. This can include custom

skin images, text, and HTML
(i.e., <![CDATA[]]>)

CssClass SelectedTab The style name of the breadcrumb
links

RootLevel 1 The root level of the breadcrumb links.
Valid values include:
-1 — show word “Root” and then all
breadcrumb tabs
0 — show all breadcrumb tabs
n (where n is an integer greater than 0)
— skip n breadcrumb tabs before
displaying

344

Chapter 13

17_595636 ch13.qxd 5/10/05 10:04 PM Page 344

Token Attribute Default Description

[COPYRIGHT] CssClass SelectedTab The style name of portal copyright link

[CURRENTDATE] CssClass SelectedTab The style name of date text

DateFormat MMMM The format of the date text
dd, yyyy

[DOTNETNUKE] CssClass Normal The style name of DotNetNuke portal
engine copyright text

[HELP] CssClass OtherTabs The style name of help link

[HOSTNAME] CssClass OtherTabs The style name of Host link (Powered
By xxxxxxxxx)

[LINKS] CssClass Command The style name of the links
Button

Separator & The separator between links. This can
nbsp; include custom skin images, text, and

HTML (i.e., <![CDATA[]]>).

Alignment Horizontal The links menu style (“Horizontal” or
“Vertical”)

Level Same Determines the menu level to display
(“Same”, “Child”, “Parent”, “Root”)

[LOGO] BorderWidth 0 The border width around the logo

[PRIVACY] Text Privacy The text of the privacy link
Statement

CssClass OtherTabs The style name of privacy link

[SIGNIN]

[TERMS] Text Terms of The text of the terms link
User

CssClass OtherTabs The style name of terms link

[USER] Text Register The text of the register/user link

CssClass OtherTabs The style name of register/user link

[CONTENTPANE] ID Content The content pane key identifier to be
Pane displayed in the user interface and

stored in the database.

As you can see there are quite a few attributes for each skin object. This complicates the process of creat-
ing skins a bit, but it is very important that you learn to utilize the attribute functions of each skin object
to adequately realize the true power and flexibility of the DotNetNuke skinning engine. You may notice
the menu control monopolizes the majority of the available attributes — this shows the flexibility of the

345

Skinning DotNetNuke

17_595636 ch13.qxd 5/10/05 10:04 PM Page 345

menu system DotNetNuke utilizes. We should note one thing here. The menu control is a fluid develop-
ment control, which means it is constantly receiving revision and this list of attributes may not be com-
plete by the time you are reading this book. Take a look at the menu documents included in the
download to ensure you are aware of all the options available to you with this powerful control.

The skinning engine will support multiple instances of the skin objects where you can define multiple
menus for your skin or any other instance. You must of course give each instance an unique name, so
you could have a menu skin object defined as [MENU] and a second menu defined as [MENU:1]. These
are also important for your content areas because it is likely you will want more than one content area
for your skin. You must have at least one pane named [ContentPane], but you will likely want other
areas to organize your content in so you can use the named instances like we did with the menu, only
use the content skin object instead of the menu.

You can also set the attributes for each of your skin objects according to the ones listed in Table 13-2.
Each skin object will support the attributes and you can specify them when you define the skin object.
For example, in the earlier example of defining your Login control, you could have specified the text for
your control such as <dnn:Login runat=”server” id=”dnnLogin” Text=”Signin” />. This example will
only work if you are creating ASCX skins. If you are working with HTML skins, you must include the
attribute setting in the manifest file.

A skin package may contain a global attributes specified in a file named “skin.xml” (or “container.xml”
for containers) that will apply to your skin files. You can also override the global skin attribute specifica-
tion with a skin-specific attribute specification by providing a “YourSkinFile.xml” file. The Skin
Uploader will merge the skin attributes with the HTML presentation file to create an ASCX skin file.
Listing 13-3 shows a section of the manifest file where these attributes are set.

Listing 13-3: Skin Attribute Example

<Objects>
<Object>

<Token>[LOGIN]</Token>
<Settings>

<Setting>
<Name>Text</Name>
<Value>Signin</Value>

</Setting>
</Settings>

</Object>
</Objects>

As you can see, the code in Listing 13-3 accomplishes the same thing as in the ASCX example, but we
were able to keep the additional attributes separate from our presentation. This allows for cleaner and
easier-to-understand HTML as you are creating HTML skins because the attributes do not congest the
HTML code with additional overhead.

We should note there is a one-to-one relationship of skin object definitions in the skin file (that is,
[MENU]) with the attribute specification in the skin.xml file. This is also true for all named instances. For
example, if you want to include a vertical and horizontal menu in your skin, you can specify [MENU:1]
and [MENU:2] named instances in your skin file and then create definitions for each with different
attributes in the skin.xml file.

346

Chapter 13

17_595636 ch13.qxd 5/10/05 10:04 PM Page 346

When creating HTML skins and specifying multiple ContentPanes, you will need to specify the “ID”
attribute in the attributes file. This will allow DotNetNuke to identify the proper pane to insert your
modules into while you are administering the portal. This also gives you the ability to add some friendly
descriptive names to the various panes you may require. For example, look at Listing 13-4 and you will
see how the ID of the pane is defined in the manifest file. You can define as many nodes of these various
pane IDs as required to accomplish your design.

Listing 13-4: Content Pane Attributes

<Objects>
<Object>

<Token>[CONTENTPANE:1]</Token>
<Settings>

<Setting>
<Name>ID</Name>
<Value>RightPane</Value>

</Setting>

</Settings>

</Object>
</Objects>

As you can see you now will have a pane named RightPane that you can use to display content to the
user. You could also define a LeftPane or NavigationPane; basically whatever your business rules
require you to include in the skin. This shows some of the flexibility this solution provides because you
are able to utilize the number of panes necessary to accomplish your design. The solution allows you to
create a layout to utilize the application as you need. By utilizing a combination of the code within your
skin and the attributes file you can create almost any iteration of a skin design you can imagine.

Since you have an understanding of the way skins are designed, we will now look at building a cascad-
ing style sheet for your skin. The CSS file will need to be defined and saved in your skin directory along
with your other resource files. DotNetNuke utilizes an external style sheet specification, which allows
you to define your styles separate from your skin files, and there are several levels of these files. This
means it is not essential for you to create a CSS file for your skin because one of the other files will define
the styles for you, but to keep a unique look to your skin design you will want to build a style sheet spe-
cific for your skin design. The multiple style sheets in the application are structured in a hierarchal
nature, so one style sheet’s definitions may override another. There is a distinct priority of the order in
which overriding of styles can occur. The cascading order of the style sheets is summarized in the fol-
lowing list with the previous item overriding the next:

❑ Modules: The modules style sheet determines the styles that can be used in the individual
module.

❑ Default: This is the default style sheet for the host-level styles and the styles are defined in
default.css.

❑ Skin: These are the skin styles you will create and apply to your skin.

❑ Container: Each container can contain styles unique to its design.

❑ Portal: These are custom styles defined by the Portal Administrator and named portal.css.

347

Skinning DotNetNuke

17_595636 ch13.qxd 5/10/05 10:04 PM Page 347

You can define your skin’s style sheet in one of two ways. You can create a style sheet named skin.css
and place it in your skin directory. This file will apply to all skins that may reside in the skin package.
You can also name your style sheet with the format of skinname.css and it will apply to the skin file with
the same name as the one you define here. You can add any style definitions you need, but at the mini-
mum you should override the default styles with those that complement the design of your skin.

Now that you have the skin created you need to create an image so you will be able to display the skin
in the preview gallery. In order to do this you need to create a high-quality image file with a .jpg exten-
sion, and it must be named the same as your skin file. For example, if your skin is named mySkin.ascx,
then your image file must be named mySkin.jpg. This same concept is also true of container files you
may have created as part of your skin design.

The last step in skin creation is to package the skin for deployment. The compressed file must be a *.zip
file. You can utilize any number of third-party compression utilities, such as Winzip or Windows XP’s
built-in utility. One thing to watch out for when zipping your package is to ensure there are no buried
folders between your skin files and the first-level compressed folder. This is a common mistake and will
cause the upload process to fail.

In many cases you will want to package a complementary set of skin files and container files in one
distribution file. In order to do this you need to package your container files in a compressed *.zip file
named “containers.zip.” Similarly, you must package your skin files in a compressed *.zip file named
“skins.zip.” Then you need to package these two files into a single *.zip file that is named after your
skin. This will allow people to install the full skin package (skins and containers) by uploading a single
file through the Skin Uploader.

Container Creation
This section looks at the procedures associated with creating a container for your skin. Containers are
basically skin definitions applied at the container level. The process for creating a container is very simi-
lar to the process for creating a skin, with the only real difference being the attributes and skin objects
available for a container.

One requirement of creating a container is you must include an Actions control so you will be able to
administer the module’s functions. The Actions control is a mechanism that allows binding of the module
functionality to the portal framework. It is essentially the user control the module will require to do the
module’s intended work. Each module can define its own actions, but generally you will have functions
to add and edit the module’s content as well as the portal-level functions to move the module between
panes and pages and edit the module settings including permissions, title, and so on. These are the mini-
mum actions required, but the module developer can also create additional actions to perform unique
functions of the module in question. For a complete description of adding your own actions, please refer
to Chapters 9 through 12. The default actions menu utilizes the SolPartActions control, which functions as
a pop-up menu when you hover over the edit icon located in the module container. This menu really only
works well on the latest browsers and will perform most reliably when using Internet Explorer 6+. There
is a downlevel version of the control that will produce a drop-down box when you connect with one of
the older browsers that will not support the advanced browser capabilities.

348

Chapter 13

17_595636 ch13.qxd 5/10/05 10:04 PM Page 348

As we’ve mentioned throughout this chapter, you will want your skins and containers to complement one
another and produce a consistent look throughout your design. So it’s best to design the skin and contain-
ers in conjunction with one another. The process is probably a little easier if you do develop them in
conjunction even though they are really separate entities. Now that you have the basics, let’s look at an
example for a container manifest file. You will recall the manifest is where you define the attributes you
want to define for the associated skin objects. To simplify this operation and provide a higher degree of
granularity, a concept known as Pane Level skinning is also available. Pane Level skinning can only be
configured at design-time when the skin designer constructs the skin. It involves the use of some custom
attributes, which can be included in the markup for the pane. The ContainerType, ContainerName, and
ContainerSrc attributes can be used to identify a specific container to be used with all modules injected
into the pane. In order for this to work correctly, the container must exist in the location specified, other-
wise the default container will be displayed. Listing 13-5 demonstrates a basic example of this concept.

Listing 13-5: Pane Level Skinning

<Objects>
<Object>

<Token>[CONTENTPANE:1]</Token>
<Settings>

<Setting>
<Name>ID</Name>
<Value>LeftPane</Value>

</Setting>
<Setting>

<Name>ContainerType</Name>
<Value>G</Value>

</Setting>
<Setting>

<Name>ContainerName</Name>
<Value>DNN</Value>

</Setting>
<Setting>

<Name>ContainrSrc</Name>
<Value>standard.ascx</Value>

</Setting>
</Settings>

</Object>
</Objects>

As you can see from this example it is possible to define standard containers for each section of the
skin’s design. You can also set the default container at the portal level, which will apply to any new
modules created in the portal. The preceding example makes the process of adding content less time
intensive because you will not need to set the container after the module is added to the page.

As you can see, the container functionality in DotNetNuke is just as powerful as the skinning process
and distinct looks of your design can be accomplished utilizing this technology. Table 13-3 showcases
the skin objects available to you when you are developing your containers.

349

Skinning DotNetNuke

17_595636 ch13.qxd 5/10/05 10:04 PM Page 349

Table 13-3: Container Skin Objects

Token Control Description

[SOLPARTACTIONS] < dnn:SolPartActions runat= Pop-up module actions menu
”server” id=”dnnSolPart (formerly [ACTIONS])
Actions”>

[DROPDOWNACTIONS] < dnn:DropDownActions Simple drop-down combo box
runat=”server” id=”dnnDrop for module actions
DownActions”>

[LINKACTIONS] < dnn:LinkActions runat= Links list of module actions
”server” id=”dnnLinkActions”>

[ICON] < dnn:Icon runat=”server” Displays the icon related to
id=”dnnIcon”> the module

[TITLE] < dnn:Title runat=”server” Displays the title of the module
id=”dnnTitle”>

[VISIBILITY] < dnn:Visibility runat=”server” Displays an icon representing
id=”dnnVisibility”> the minimized or maximized

state of a module

[PRINTMODULE] < dnn:PrintModule runat= Displays a new window with
”server” id=”dnn PrintModule “> only the module content

displayed

[CONTENTPANE] <div runat=”server” Injects a placeholder for
id=”ContentPane”> module content

As you can see you have some of the same functions available to your skinning functions, but we have also
added a few additional objects, which do not make sense from a page level but become very important on
a module level. These are very powerful objects and can really increase the use of your modules and con-
tainers, so you should take some time to experiment with the various uses of these skin objects. Table 13-4
covers the associated attributes you can utilize in conjunction with the skin objects for containers.

Table 13-4: Container Skin Object Attributes

Token Attribute Default Description

[SOLPARTACTIONS]

[DROPDOWNACTIONS]

[LINKACTIONS]

[ICON] BorderWidth 0 The border width around the icon

[TITLE] CssClass Head The style name of title

350

Chapter 13

17_595636 ch13.qxd 5/10/05 10:04 PM Page 350

Token Attribute Default Description

[VISIBILITY] BorderWidth 0 The border width around the icon

MinIcon min.gif The custom min icon file located in
the skin file

MaxIcon max.gif The custom max icon file located in
the skin file

[PRINTMODULE] PrintIcon print.gif The custom print icon file located in
the skin file

[CONTENTPANE] ID Content The content pane key identifier to be
Pane displayed in the user interface and

stored in the database

Now that the objects and attributes are defined, let’s look at an example container for the DotNetNuke
project. Listing 13-6 displays the DNN-Blue container from the default install. You will see this container
utilizes the same attributes we have discussed previously.

Listing 13-6: Example Container

<TABLE class=”containermaster_blue” cellSpacing=”0” cellPadding=”5” align=”center”
border=”0”>

<TR>
<TD class=”containerrow1_blue”>

<TABLE width=”100%” border=”0” cellpadding=”0” cellspacing=”0”>
<TR>

<TD valign=”middle” nowrap><dnn:ACTIONS runat=”server”
id=”dnnACTIONS” /></TD>

<TD valign=”middle” nowrap><dnn:ICON runat=”server” id=”dnnICON”
/></TD>

<TD valign=”middle” width=”100%” nowrap> <dnn:TITLE
runat=”server” id=”dnnTITLE” /></TD>

<TD valign=”middle” width=”20” nowrap><dnn:VISIBILITY
runat=”server” id=”dnnVISIBILITY” /></TD>

</TR>
</TABLE>

</TD>
</TR>
<TR>

<TD id=”ContentPane” runat=”server” align=”center”></TD>
</TR>
<TR>

<TD>
<HR class=”containermaster_blue”>
<TABLE width=”100%” border=”0” cellpadding=”0” cellspacing=”0”>

<TR>
<TD align=”left” valign=”middle” nowrap><dnn:ACTIONBUTTON1

runat=”server” id=”dnnACTIONBUTTON1” CommandName=”AddContent.Action”
DisplayIcon=”True” DisplayLink=”True” /></TD>

(continued)

351

Skinning DotNetNuke

17_595636 ch13.qxd 5/10/05 10:04 PM Page 351

Listing 13-6: (continued)

<TD align=”right” valign=”middle” nowrap><dnn:ACTIONBUTTON2
runat=”server” id=”dnnACTIONBUTTON2” CommandName=”SyndicateModule.Action”
DisplayIcon=”True” DisplayLink=”False” /> <dnn:ACTIONBUTTON3 runat=”server”
id=”dnnACTIONBUTTON3” CommandName=”PrintModule.Action” DisplayIcon=”True”
DisplayLink=”False” /> <dnn:ACTIONBUTTON4 runat=”server” id=”dnnACTIONBUTTON4”
CommandName=”ModuleSettings.Action” DisplayIcon=”True” DisplayLink=”False” /></TD>

</TR>
</TABLE>

</TD>
</TR>

</TABLE>

The example in Listing 13-6 is a simple container that will really help the display and feel of a portal
with a blue-colored theme. You may notice we have included an ASCX container option here. If you
were going to utilize this container, you would need to add the Register directive for each of the controls
we have added.

Summary
This chapter looked at the basics of creating skins with DotNetNuke. Basically the point of all this is if
you can design and program in HTML and can follow the few simple rules enforced by the skinning
engine, then you can build beautiful designs for your DotNetNuke site. Many examples of both free and
commercial skins are available for you to use as references when creating your skins and containers.
There are quite a few examples on the DotNetNuke web site and in the solution as well as a multitude
of resource sites in the DotNetNuke directory. We urge you to download some of these examples and,
coupled with the knowledge contained in this chapter, you will create high-quality skins of your own in
no time. If you can imagine it, then you can build it with the DotNetNuke skinning engine. The next
chapter shows you how to take your finished skins and containers, as well as the modules you have
built as a result of the information in the preceding chapters, and package them for distribution.

352

Chapter 13

17_595636 ch13.qxd 5/10/05 10:04 PM Page 352

Distribution

This chapter examines how DotNetNuke add-ons can be distributed and installed. As DotNetNuke
has progressed, we have continued to add functionality to allow developers to package and dis-
tribute extensions to the DotNetNuke framework. These add-ons allow the administrators and
users to customize the portal to suit their particular needs. Add-ons can provide additional func-
tionality or can alter the visual presentation style for the portal. DotNetNuke uses zip files to pack-
age and redistribute add-ons. Each add-on type defines the specific files that may be included in the
package. These custom add-ons are broken down into three major categories:

1. Code add-ons

❑ Modules

❑ Skin Objects

❑ Providers

2. Skinning add-ons

❑ Skins

❑ Containers

3. Language add-ons

❑ Language Packs

There are many aspects to consider in the distribution of add-ons. As we look at each of these
add-on types, we answer the following questions:

❑ What is the format of the manifest or configuration files for the add-on?

❑ How do you package all of the elements that go into a single add-on?

❑ How do you install the add-on?

18_595636 ch14.qxd 5/10/05 9:55 PM Page 353

Code Add-Ons
DotNetNuke provides mechanisms to extend the core portal functionality through the use of code
add-ons. These add-ons can be packaged for easy distribution and installation. DotNetNuke supports
three types of redistributable code packages: modules, skin objects, and providers. While these are not
the only mechanisms available for extending portal functionality, they are the only officially supported
mechanism for distributing code add-ons.

Modules
A module, also known as a DotNetNuke Private Assembly (PA), represents a discrete set of application
code that is used to extend the functionality of the DotNetNuke portal. A module provides a user inter-
face for managing and displaying custom content in the portal. Unlike the other DotNetNuke code add-
ons, skin objects and providers, modules are designed to be easily added to a page by the administrator.
Each module may be comprised of one or more ASP.NET user controls and compiled assemblies. Like
the main portal application, the module can take advantage of the Data Provider model to package
providers for multiple database management systems. In addition to user controls and assemblies, a
module may use additional resources including images, xml files, SQL scripts, text files, cascading style
sheets, and Resource archives.

Module Manifest File
The module manifest file is an XML file that is included in the module package to delineate the various
elements that comprise a module package. The manifest file is organized to allow the portal to easily
identify the module files, and to determine the appropriate database entries necessary for the proper
functioning of the module. Listing 14-1 shows the basic manifest file format. DotNetNuke recognizes
both version 2.0 and version 3.0 manifest files.

Listing 14-1: Module Manifest File Format

<?xml version=”1.0” encoding=”utf-8” ?>
<dotnetnuke version=”D.D” type=”Module”>

<folders> -- Contains one or more folder nodes
<folder>

<name />
<description />
<version />
<businesscontrollerclass /> -- V3.0 only
<resourcefile />
<modules> -- Contains one or more module nodes

<module>
<friendlyname />
<controls> -- Contains one or more control nodes

<control>
<key />
<title />
<src />
<iconfile />
<type />

354

Chapter 14

18_595636 ch14.qxd 5/10/05 9:55 PM Page 354

<vieworder />
<helpurl /> -- V3.0 only
<helpfile /> -- V2.0 only

</control>
</controls>

</module>
</modules>
<files> -- Contains one or more file nodes

<file>
<path />
<name />

</file>
</files>

</folder>
</folders>

</dotnetnuke>

Let’s break this down and examine the individual xml nodes.

The root element is the dotnetnuke node. This node contains two attributes: version and type.

<dotnetnuke version=”D.D” type=”Module”>

The version attribute takes a numeric value. DotNetNuke supports two versions — “2.0” and “3.0.”
Version 1.0 modules are no longer supported in DotNetNuke 3.x.

The type attribute must be set to “Module” for both v2 and v3 formats but may contain additional val-
ues to distinguish between the different manifest file formats used by skin objects and providers. These
two additional formats will be discussed later in this chapter.

The manifest provides a <folders> element for identifying a collection of individual module folders.
A folder node represents a single DotNetNuke module. The folder node may contain seven child ele-
ments as defined in Table 14-1.

Table 14-1: Folder Elements

Element Name Description Required Versions Supported

Name The name element defines both the name Yes 2.0, 3.0
of the module as well as the name of the
directory that DotNetNuke will create in the
DesktopModules folder. This folder becomes
the root from which all other module files are
installed (dll files are a special exception to
this rule since they must be installed to the
application \bin directory).

description The description element is used for creating Yes 2.0, 3.0
the module description that is presented to
the host when viewing modules on the
Module Definitions page.

Table continued on following page

355

Distribution

18_595636 ch14.qxd 5/10/05 9:55 PM Page 355

Element Name Description Required Versions Supported

version The version element is the version of the Yes 2.0, 3.0
module. This element must be in the
format XX.XX.XX where X is a digit from
0 to 9. This version number is used to
determine which dataprovider scripts to
execute. During installation, any script that
has a higher version number than the
currently installed module version will be
executed. If this is the first time the module
has been installed, then all script files will be
executed. Scripts are executed in the order
of their version numbers.

business The businesscontrollerclass defines the No 3.0
controllerclass qualified name of the primary business

controller in the module. If the IPortable,
ISearchable, or IUpgradeable interfaces are
implemented by the module, then they must
be implemented in this class. This entry uses
the format [namespace].[class name],
[assembly name]. An example entry would
look like < businesscontrollerclass
>DotNetNuke.Modules.Survey.Survey
Controller, DotNetNuke.Modules
.Survey</ businesscontrollerclass>.

resourcefile The resourcefile identifies a zip file that is No 2.0, 3.0
included in the module package. The resource
file may contain any number of files, which
will be installed using folder information
defined in the resource file. Files placed in
the resource file do not need to be delineated
in the files collection of the manifest.

modules The modules element defines a collection Yes 2.0, 3.0
of modules that are installed in the current
folder. These modules will be associated with
the Desktop Module defined by the current
folder. See Table 14-2 for a description of each
module element.

files The files element defines a collection of Yes 2.0, 3.0
files that are installed in the current folder.
See Table 14-4 for a description of each file
element.

Additionally, the folder node contains two collection child elements: Modules and Files, which are
described in Tables 14-2, 14-3, and 14-4, respectively.

356

Chapter 14

18_595636 ch14.qxd 5/10/05 9:55 PM Page 356

Table 14-2: Module Elements

Element Name Description Required Versions Supported

friendlyname The friendlyname element defines the name Yes 2.0, 3.0
of the current module. This element is used
primarily for display purposes to distinguish
between multiple modules in a single
Desktop Module.

controls The controls element defines a collection of Yes 2.0, 3.0
user controls that are installed as part of the
current module. These controls may provide
different user or administrative screens for
this specific module. See Table 14-3 for a
description of each control element.

Table 14-3: Control Elements

Element Name Description Required Versions Supported

Key The key element is a unique identifier that No 2.0, 3.0
distinguishes each control in a single module.
The primary view control does not use the
key element and must not be included in the
control definition. The module can use these
key values to determine the appropriate
screen to display for the current module state.
The portal will display this control on the
Module Settings screen if the control key is
set to “Settings.”

Title The title element defines the text displayed No 2.0, 3.0
in the module title bar for the module edit
screen associated with the current control.
The title is not used for the primary view
control.

Src The src element is the filename of the Yes 2.0, 3.0
ASP.NET user control corresponding to the
current control definition. The filename
includes any path information relative to
the current module folder.

iconfile The iconfile element defines the icon file to No 2.0, 3.0
display in the module title bar. The iconfile
setting is ignored for the primary view
control and a control with a key of “Settings.”

Table continued on following page

357

Distribution

18_595636 ch14.qxd 5/10/05 9:55 PM Page 357

Element Name Description Required Versions Supported

type The type element defines the security Yes 2.0, 3.0
access level required to view the current
control. This level is defined as a subset of
the SecurityAccessLevel enumeration. Valid
values include Anonymous, View, Edit,
Admin, Host.

vieworder The vieworder element is used to order No 2.0, 3.0
the controls when they are injected into
the admin UI when multiple controls are
associated with the module using the
same key.

helpurl The helpurl element defines a URL No 3.0
for help information related to the
current control.

helpfile The helpfile element defines a file for help No 2.0
information related to the current control.
The file location is relative to the current
module folder. This element was
deprecated in 3.0 and has been replaced
through the use of LocalResources.

Table 14-4: File Elements

Element Name Description Required Versions Supported

path The path element defines a relative path No 2.0, 3.0
to the module folder. The file defined by
this node will be installed in this folder.

name The name element is the name of the file Yes 2.0, 3.0
in the module package. If the file does not
exist in the module package, then an error
will be logged.

Listing 14-2 shows the manifest file for the Survey module. The Survey module is included with
DotNetNuke as an example of how to build, package, and deploy modules. The module package
and source code can be found in the /desktopmodules/survey directory of the standard DotNetNuke
installation.

Listing 14-2: Sample Manifest for the Survey Module

<?xml version=”1.0” encoding=”utf-8” ?>
<dotnetnuke version=”3.0” type=”Module”>

<folders>
<folder>

358

Chapter 14

18_595636 ch14.qxd 5/10/05 9:55 PM Page 358

<name>Survey</name>
<description>

Survey allows you to create custom surveys to obtain public feedback
</description>
<version>01.00.00</version>
<businesscontrollerclass>

DotNetNuke.Modules.Survey.SurveyController, DotNetNuke.Modules.Survey
</businesscontrollerclass>
<resourcefile>SurveyResources.zip</resourcefile>
<modules>

<module>
<friendlyname>DotNetNuke.Survey</friendlyname>
<controls>

<control>
<src>Survey.ascx</src>
<type>View</type>
<helpurl>http://www.dotnetnuke.com</helpurl>

</control>
<control>

<key>Edit</key>
<title>Create Survey</title>
<src>EditSurvey.ascx</src>
<iconfile>icon_survey_32px.gif</iconfile>
<type>Edit</type>
<helpurl>http://www.dotnetnuke.com</helpurl>

</control>
<control>

<key>Settings</key>
<title>Survey Settings</title>
<src>Settings.ascx</src>
<iconfile>icon_survey_32px.gif</iconfile>
<type>Edit</type>
<helpurl>http://www.dotnetnuke.com</helpurl>

</control>
</controls>

</module>
</modules>
<files>

<file>
<name>Survey.ascx</name>

</file>
<file>

<name>EditSurvey.ascx</name>
</file>
<file>

<name>Settings.ascx</name>
</file>
<file>

<name>DotNetNuke.Modules.Survey.dll</name>
</file>
<file>

<name>DotNetNuke.Modules.Survey.SqlDataProvider.dll</name>
</file>

(continued)

359

Distribution

18_595636 ch14.qxd 5/10/05 9:55 PM Page 359

Listing 14-2: (continued)

<file>
<name>01.00.00.SqlDataProvider</name>

</file>
<file>

<name>Uninstall.SqlDataProvider</name>
</file>

</files>
</folder>

</folders>
</dotnetnuke>

Packaging Modules
DotNetNuke private assemblies are packaged as zip files. Files included in the package are placed in
predetermined directories as defined by the file type and manifest file settings. Any directory informa-
tion contained in the zip file is ignored. Only files that are specifically delineated in the manifest file will
be extracted and saved to the portal directories. Figure 14-1 shows the survey module package that is
included with DotNetNuke.

Figure 14-1

Special File Types
DotNetNuke recognizes four specific file types in the private assembly archive. While other file types
may be included in the package, DotNetNuke treats these types as special cases. The following list looks
at each of these types and how they are handled during installation:

❑ .Dnn file type: The .dnn file is the manifest file for the Module package. Each package must
include a single manifest file that follows the format specified below. The manifest file can use
any name, but must have the .dnn file extension. The manifest fully describes each file included
in the package and identifies information needed by the portal to create the appropriate module
definition entries and install the module files to the appropriate directories required by
DotNetNuke. The .dnn file is copied to the module folder defined in the manifest.

❑ .Dll file type: Dll files are .NET assemblies. In DotNetNuke, these assemblies may represent the
compiled module code, a dataprovider assembly, or even an ASP.NET Server Control used in
the module. All dll files are installed to the application directory (/bin).

360

Chapter 14

18_595636 ch14.qxd 5/10/05 9:55 PM Page 360

❑ .Ascx file type: Ascx files are the visual portion of a user control in ASP.NET. This file defines
the layout of the user interface for the specific module. This file will be copied to the module
folder and a special entry is made in the DotNetNuke system tables as specified in the manifest
file. The Ascx file may represent a single “module control” or may be a constituent control that
is used on multiple screens within the module. All module controls should be defined in the
manifest, while constituent controls should only appear in the manifest file list.

❑ Dataprovider script file type: Dataprovider files contain SQL scripts that define the
database-specific code for the module. This file type uses a file extension that follows a standard
pattern — .[DataProviderType]DataProvider, where [DataProviderType] corresponds to the
provider type defined in the DotNetNuke web.config file (“Access,” “Sql,” “Mysql,” “Oracle,”
and so on). New dataproviders may be written by third-party vendors, and in that case new
dataprovider script file types will be defined by the vendor. Dataprovider scripts are installed to
a subdirectory of the Providers/DataProviders folder. The subdirectory is created with the same
name as the dataprovider type (for example, SQLDataProvider files are installed in the
providers/dataproviders/sqldataprovider directory).

Resource File
In addition to the predefined file types, the module package also allows for the inclusion of a resource file.
A resource file is a zip file that may contain any file that is not one of the special types defined earlier.
Unlike the main module zip file, all directory information in the resource file will be used to determine
the appropriate directory in which to place the individual resources. Any directory that is defined will be
created relative to the main module directory as defined in the manifest. Files that are placed in the
resource file should not be delineated in the manifest file; however, the resource file must be specified in
the manifest. Figure 14-2 shows the contents of the SurveyResources.zip defined in the survey module
manifest in Listing 14-2.

Figure 14-2

Notice that the *.resx files included in the resource file include path information. These files will be
installed in the [module folder]/App_LocalResources directory.

Unlike earlier versions DotNetNuke 3.0 only includes a dataprovider for Microsoft
SQL Server. The Microsoft Access Provider was removed from the distribution to
simplify maintenance of the core framework. Additional providers, including a
Microsoft Access Provider, are available from third-party vendors.

361

Distribution

18_595636 ch14.qxd 5/10/05 9:55 PM Page 361

Installing Modules
Once you have created a manifest file and properly packaged your module, it is now ready for installa-
tion. The use of the zip file format and a well-defined manifest format greatly simplifies module installa-
tions over earlier versions of DotNetNuke. Because of the potential security risk, only the Portal Host
has permissions to install modules. DotNetNuke supports two distinct methods for installing modules
as well as other add-ons: web-based file upload or FTP-based file upload. These two methods differ pri-
marily in the mechanism used for transferring the file to the server. Once DotNetNuke receives the file
all processing is the same.

Web-Based File Upload
Follow these four simple steps to install a new module into your portal using the web-based installer.

Step 1
Log in with the Host account and go to the Module Definitions page from the Host menu (see Figure 14-3).
Only the Host account is authorized to install modules because modules have full access to the portal
including file and database access.

Figure 14-3

Modules can pose a security risk since they have unlimited access to the portal.
Module code has the same security privileges as the core application. This means
that modules could alter key portal tables, manipulate application files, or even gain
access to other server resources. Modules should be fully tested in a “safe” environ-
ment prior to installation in a production system. In addition, the portal should run
in a partial trust environment, which would limit the ability of any module to access
restricted resources.

362

Chapter 14

18_595636 ch14.qxd 5/10/05 9:55 PM Page 362

Step 2
On the Module Definitions page, select the Upload New Module menu item from the module action
menu (see Figure 14-4).

Figure 14-4

Step 3
The File Upload screen provides a simple interface for uploading one or more modules (see Figure 14-5).
The File Upload screen provides a common user interface for uploading different add-on types. Browse
to the desired module package, click OK on the Browse dialog, and click the Add link on the file upload
page. Use the Upload New File link button to finish installing the module.

Figure 14-5

363

Distribution

18_595636 ch14.qxd 5/10/05 9:55 PM Page 363

Step 4
After installing a new module, you should review the upload logs (see Figure 14-6). Errors will be high-
lighted in red. If no errors are shown, the module is ready for use in your portal.

Figure 14-6

FTP-Based installation
DotNetNuke 3.0 includes support for file-based installation of all defined add-on types. The framework
includes a scheduled task that runs every minute to check installation folders for new add-ons to install. If
you do not need this service, you can disable the scheduled task from the Schedule page in the Host menu.

To install a new module using FTP or any file manager, copy the module into the Install/Module direc-
tory of your DotNetNuke installation. When the ResourceInstaller task runs, it will install this module
using the standard module installation code. If an error occurs it will be noted in the task history,
which is available by selecting the History link for the ResourceInstaller task on the Schedule page (see
Figure 14-7).

364

Chapter 14

18_595636 ch14.qxd 5/10/05 9:55 PM Page 364

Figure 14-7

Skin Objects
Skins objects, like modules, are active elements designed to programmatically extend the functionality of
DotNetNuke. Skin objects are used in skins and containers to produce a dynamic user interface. A num-
ber of default skin objects are included with DotNetNuke (see Table 14-5) for common portal functions
such as login, status, and navigation.

Table 14-5: Standard Skin Objects

HTML Token ASCX Control Usage Description

[ACTION < dnn: ActionButton runat= Container Displays a list of link buttons
BUTTON] ”server” id=”dnnAction that correspond to Action menu

Button”> items with a specified command
name.

[ICON] < dnn:Icon runat=”server” Container Displays an icon for the module.
id=”dnnIcon”> If the icon module was not set

on the Module Settings page,
then no icon is displayed.

[PRINT < dnn: PrintModule runat= Container Displays an image button for
MODULE] ”server” id=”dnnPrintModule”> printing module contents.

[ACTIONS] < dnn: Actions runat=”server” Container Displays the module action
id=”dnnActions”> menu using the Solpart Menu

control.

Table continued on following page

365

Distribution

18_595636 ch14.qxd 5/10/05 9:55 PM Page 365

HTML Token ASCX Control Usage Description

[SOLPART < dnn:SolpartActions runat= Container Displays the module action
ACTIONS] ”server” id=”dnnSolpart menu using the Solpart Menu

Actions”> control. This is the same as the
[ACTIONS] skin object.

[DROPDOWN < dnn: DropDownActions Container Displays the module action
ACTIONS] runat=”server” id=”dnnDrop menu items using a

DownActions”> dropdownlist.

[LINK < dnn: LinkActions runat= Container Displays the module action
ACTIONS] ”server” id=”dnnLinkActions”> menu items using a series of

link buttons.

[TITLE] < dnn:Title runat=”server” Container Displays the module title.
id=”dnnTitle”>

[VISIBILITY] < dnn:Visibility runat= Container Displays the expand/collapse
”server” id=”dnnVisibility”> button for hiding or displaying

module contents.

[SIGNIN] < dnn:Signin runat=”server” Skin Displays the signin control for
id=”dnnSignin”> providing your username and

password.

[BANNER] < dnn:Banner runat=”server” Skin Displays a random banner ad.
id=”dnnBanner”>

[BREAD < dnn:Breadcrumb runat= Skin Displays the path to the
CRUMB] ”server” id=”dnnBreadcrumb”> currently selected page in the

form of PageName1 > Page-
Name2 > PageName3.

[CONTENT <div runat=”server” id= Skin A placeholder for content
PANE] ”ContentPane” > modules.

[COPYRIGHT] < dnn:Copyright runat= Skin Displays the copyright notice
”server” id=”dnnCopyright”> for the portal.

[CURRENT < dnn:CurrentDate runat= Skin Displays the current date.
DATE] ”server” id=”dnnCurrentDate”>

[DOTNET < dnn:DotNetNuke runat= Skin Displays the Copyright notice
NUKE] ”server” id=”dnnDotNetNuke”> for DotNetNuke.

[HELP] < dnn:Help runat=”server” Skin Displays a link for Help that
id=”dnnHelp”> will launch the user’s e-mail

client and send mail to the por-
tal administrator.

[HOSTNAME] < dnn:HostName runat= Skin Displays the Host Title linked
”server” id=”dnnHostName”> to the Host URL.

366

Chapter 14

18_595636 ch14.qxd 5/10/05 9:55 PM Page 366

HTML Token ASCX Control Usage Description

[LINKS] < dnn:Links runat=”server” Skin Displays a flat menu of links
id=”dnnLinks”> related to the current tab level

and parent node. This is useful
for search engine spiders and
robots.

[LOGIN] < dnn:Login runat=”server” Skin Dual state control — displays
id=”dnnLogin”> “Login” for anonymous users

and “Logout” for authenticated
users.

[LOGO] < dnn:Logo runat=”server” Skin Displays the portal logo.
id=”dnnLogo”>

[PRIVACY] < dnn:Privacy runat=”server” Skin Displays a link to the Privacy
id=”dnnPrivacy”> Information for the portal.

[SEARCH] < dnn:Search runat=”server” Skin Displays a search input box
id=”dnnSearch”> and link button.

[MENU] < dnn:Menu runat=”server” Skin Displays the hierarchical
id=”dnnMenu”> navigation menu.

[SOLPART < dnn:SolpartMenu runat= Skin Displays the hierarchical
MENU] ”server” id=”dnnSolpartMenu”> navigation menu. This is the

same as the [MENU] skin object.

[TERMS] < dnn:Terms runat=”server” Skin Displays a link to the Terms and
id=”dnnTerms”> Conditions for the portal.

[TREEVIEW] < dnn:TreeView runat=”server” Skin Displays a tree-based menu of
id=”dnnTreeView”> links for the portal pages. The

menu can be set to limit the tree
to various menu levels.

[USER] < dnn:User runat=”server” Skin Dual state control — displays a
id=”dnnUser”> “Register” link for anonymous

users or the user’s name for
authenticated users.

Custom skin objects are packaged and installed using the same processes as custom modules. All of the
necessary skin object resource files are combined with a DotNetNuke manifest file (* .dnn) and packaged
into a compressed zip file. Follow the installation steps outlined in the “Installing Modules” section
earlier in the chapter. The primary difference between modules and skin objects is with the manifest file
format.

367

Distribution

18_595636 ch14.qxd 5/10/05 9:55 PM Page 367

Skin Object Manifest File
The skin object manifest file format (see Listing 14-3) is derived from version 2 of the module manifest
format (shown in Listing 14-1 previously). Changes are highlighted.

Listing 14-3: Skin Object Manifest File Format

<?xml version=”1.0” encoding=”utf-8” ?>
<dotnetnuke version=”D.D” type=”SkinObject”> -- Changed type value

<folders>
<folder>

<name />
<description /> -- Not used
<version /> -- Not used
<resourcefile />
<modules>

<module>
<friendlyname /> -- Not used
<controls>

<control>
<key />
<title />
<src />
<iconfile />
<type /> -- Changed valid values
<vieworder />

</control>
</controls>

</module>
</modules>
<files>

<file>
<path />
<name />

</file>
</files>

</folder>
</folders>

</dotnetnuke>

The type attribute of the root dotnetnuke node must be set to “SkinObject.” Unlike modules, skin
objects ignore the version value. The version must still be a decimal number in the format D.D where D
is a single digit.

The description, version, and friendlyname elements are no longer used but are still allowed in the
manifest file without causing a validation error. The type element must be set to “SkinObject.”

While there is no restriction on the actual number, it should be set to “2.0” to pre-
vent conflicts with future versions of the skin object format.

368

Chapter 14

18_595636 ch14.qxd 5/10/05 9:55 PM Page 368

Providers
Providers are a third mechanism for extending the functionality of the DotNetNuke portal framework.
The primary difference between modules, skin objects, and providers is in the usage pattern. Modules
provide a mechanism for extending system functionality. No two modules are guaranteed to provide the
exact same functionality or implementation. Skin objects follow this same behavior with each skin object
being free to implement whatever functionality desired. Providers are unique in that each provider of a
given type must implement the exact same functionality. The implementation details may change but
the basic functionality (that is, the programming interface) is defined by the portal.

Provider Manifest File
Because providers are a programmatic extension to the portal framework, they use the same packaging
and installation mechanism defined for modules. Like skin objects, providers have their own manifest
file format (see Listing 14.4), which is derived from the module manifest format.

Listing 14-4: Provider Manifest File Format

<?xml version=”1.0” encoding=”utf-8” ?>
<dotnetnuke version=”D.D” type=”Provider”> -- Changed type value

<folder>
<name />
<type />
<files>

<file>
<path />
<name />

</file>
</files>

</folder>
</dotnetnuke>

The type attribute of the root dotnetnuke node must be set to “Provider.” Providers follow the same
rules as skin objects for the version attribute. Tables 14-6 and 14-7 show the manifest file elements.

Table 14-6: Provider Manifest Folder Elements

Element Name Description Required

Name The name element defines the name of the provider. This Yes
name will be used to create the folder in the appropriate
provider directory.

Type The type element is the provider type. This element may be Yes
either “DataProviders” or “LoggingProviders.” Additional
provider types will be supported in future releases.

Files The files element defines a collection of files that are installed Yes
in the current folder. See Table 14-7 for a description of each
file element.

369

Distribution

18_595636 ch14.qxd 5/10/05 9:55 PM Page 369

Table 14-7: Provider Manifest File Elements

Element Name Description Required

Path The path element defines a relative path to the provider folder. No

Name The name element is the name of the file in the provider Yes
package. If the file does not exist in the provider package,
then an error will be logged.

Files in the provider package will be installed as

[DotNetNuke Root
Folder]/Providers/[ProviderType]/[FolderName]/[FilePath]/[FileName]

Skinning Add-Ons
While code add-ons are designed to extend the functionality of the portal, skinning add-ons are aimed at
giving the portal administrator complete control over the visual appearance of the portal. In order to
simplify development and maintenance of these skinning packages, no manifest files are required.
Instead, skinning packages rely on zip files to package and group the files to be installed in support of a
skin. While not utilizing manifest files, skinning packages include support for XML-based configuration
files. Configuration files allow the designer to set properties on individual skin elements that are identi-
fied inside the skinning source files. These skin elements include all skin objects as well as content panes
defined within the skin definition file.

DotNetNuke uses two mechanisms for grouping content in the portal: pages and modules. Skins provide
a method for changing the appearance of individual pages, while containers provide this function for
each module instance placed on a page. Let’s first take a look at how skins are packaged and deployed.

Skins
As discussed in Chapter 13, skins provide the primary method for controlling the appearance of individ-
ual portal pages. One of the primary goals for the DotNetNuke skinning solution was to create a simple
the process for developing and packaging skins. This process should allow web designers as well as
developers to create skins using a variety of tools: from simple HTML editors to complex IDEs like
Visual Studio .NET. This separation of form and function is one of the strengths of the DotNetNuke
skinning solution.

Packaging Skins
A skin package is comprised of multiple files that constitute a complete skin:

❑ htm, .html files: Abstract skin definition files that will be processed by the Skin Uploader to cre-
ate an .ascx file.

370

Chapter 14

18_595636 ch14.qxd 5/10/05 9:55 PM Page 370

❑ .ascx files: Skin definition user controls that are written in the format required by the skin
engine.

❑ .css files: Styles sheets that are related to skins.

❑ .gif, .jpg, .jpeg, .png: Support graphics files.

❑ .xml files: Abstract skin properties files that will be combined with the abstract skin definition
files during the upload processing.

❑ .zip files: Skin and container packages that are named according to the parent package.

A skin package can contain multiple skin files. This allows you to create skins that leverage the same
graphics but vary slightly based on layout. Obviously the more skin files you have in a package, the
more maintenance will be required when you want to make a general change to the presentation in
the future.

When packaging files for the skin, files should be zipped using relative file paths to the skin definition
files. When unpacked, all file paths in the definition file will be corrected to point at the new file loca-
tions in the portal. Files will be unzipped using the file path information contained in the skin package.

The following example shows two different graphic images from an abstract skin definition file:

The files should be included in the package as indicated in Figure 14-8.

Figure 14-8

If this snippet was contained in a package called MySkin.zip, the resulting image tags after installation
would look this:

<IMG src=”/Portals/_default/Skins/MySkin/top_left.gif” height=”10” width=”10”
border=”0”>
<IMG src=”/Portals/_default/Skins/MySkin/images/top_right.gif” height=”10”
width=”10” border=”0”>

You should make sure that relative file path information in the zip file matches the
relative path information in the skin definition files.

You can include any additional files needed by the skin, however these files must be
one of the allowable file types defined in the Host File Upload Extensions setting.

371

Distribution

18_595636 ch14.qxd 5/10/05 9:55 PM Page 371

Skin packages may contain files that are applied to all skin definition files in the package or that are spe-
cific to an individual skin definition as outlined in Table 14-8. Any properties or styles set in the global
file (if present) will be overwritten with the value from the corresponding file that is specific to an indi-
vidual skin. Graphics and any additional files stored in the skin package are global in scope and may be
referenced by any skin definition file included in the package.

Table 14-8: Skin Filenames

File Type Global Name Individual Skin Name

Configuration File Skin.xml [skin filename].xml

Style Sheet Skin.css [skin filename].css

In many cases you will want to package a complementary set of skin files and container files in one
distribution file. In order to do this you need to package your container files in a zip file named
“containers.zip.” Similarly, you must package your skin files in a zip file name “skins.zip.” Then you
need to package these two files into a single zip file that is named after your skin. This will allow people
to install the full skin package (skins and containers) by uploading a single file through the Skin Uploader.

DotNetNuke contains a Skin Gallery for previewing skins installed in the portal. In order for the skin to
be viewable in the Skin Gallery, you need to create a high-quality screen shot of your skin. For each skin
or container definition file (both html- and ascx-based definitions) you should also have a corresponding
screen shot stored with a .jpg file extension (that is, if your skin file is named myskin.html, then your
screen shot needs to be named myskin.jpg).

Skin Configuration Files
When creating abstract skin definition files (htm or html files) the designer places tokens in the skin to
designate locations for skin objects or content panes. In order to control the behavior and appearance of
the skin objects and panes, the author may optionally choose to include one or more configuration files
in the skin package. Any public property or field of a skin object or content pane may be set using the
configuration file. As noted earlier, the global Skin.xml file property settings will be applied to all skins.
If present, these property settings may be overridden by a skin-specific configuration file as well.

The skin configuration file uses a simple format, as shown in Listing 14-5.

Listing 14-5: Skin Configuration File Format

<Objects>
<Object>

<Token />
<Settings>

<Setting>
<Name />
<Value />

</Setting>
</Settings>

</Object>
</Objects>

372

Chapter 14

18_595636 ch14.qxd 5/10/05 9:55 PM Page 372

Table 14-9 describes the relevant elements from the skin configuration file.

Table 14-9: Configuration File Elements

Element Name Description

Objects The Objects element contains one or more Object nodes that provide property
settings for the individual skin element.

Token The Token element defines the skin element to update with the associated
settings. This value must match a token that exists in the associated skin
definition file(s).

Settings The Settings element contains one or more Setting nodes that provide the indi-
vidual name/value pairs for a single skin element property.

Name The Name element is the name of the skin object property/attribute. If the
skin object does not support this attribute, an error may be thrown when the
skin is used in the portal.

Value The Value element is the value to assign to the skin object attribute. If this is
an invalid value, then an error may be thrown when the skin is used.

This format allows the author to easily set one or more attributes for each token included in the skin.
Each skin object has its own set of supported attributes, as shown in Chapter 13. The Skin Uploader will
merge the skin attributes with the HTML presentation file to create an ASCX skin file.

Please note there is a one-to-one correspondence of skin object declarations in your skin file with the
attribute specification in the XML file. This is also true for named instances. For example, if you want to
include a vertical and horizontal set of navigation links in your skin, you can specify [LINKS:1] and
[LINKS:2] named instances in your skin file and then create definitions for each with different attributes
in your XML file.

Listing 14-6 shows a sample configuration file that is used in the PHPDupe skin.

Listing 14-6: Skins Configuration File Format

<Objects>
<Object>

<Token>[LINKS:1]</Token>
<Settings>

<Setting>
<Name>Separator</Name>
<Value><![CDATA[|]]></Value>

(continued)

If you are creating ASCX skins, you will need to specify the attribute directly in
your skin file (that is, <dnn:Login runat=”server” id=”dnnLogin” Text=”Signin” />)
and no configuration file is necessary.

373

Distribution

18_595636 ch14.qxd 5/10/05 9:55 PM Page 373

Listing 14-6: (continued)

</Setting>
<Setting>

<Name>Level</Name>
<Value>Root</Value>

</Setting>
</Settings>

</Object>
<Object>

<Token>[LINKS:2]</Token>
<Settings>

<Setting>
<Name>Level</Name>
<Value>Child</Value>

</Setting>
<Setting>

<Name>Alignment</Name>
<Value>Vertical</Value>

</Setting>
<Setting>

<Name>Separator</Name>
<Value><![CDATA[<big> · </big>]]></Value>

</Setting>
</Settings>

</Object>
<Object>

<Token>[DOTNETNUKE]</Token>
<Settings>

<Setting>
<Name>CssClass</Name>
<Value>Copyright</Value>

</Setting>
</Settings>

</Object>
</Objects>

When settings are applied to the abstract skin file they are injected in the control tag as attributes and
take the form Name=”Value”. So based on the skin objects defined in Table 14-5 when the preceding con-
figuration file is used, the [DOTNETNUKE] token will be replaced with the following control reference:

< dnn:DotNetNuke runat=”server” id=”dnnDotNetNuke” CssClass=”Copyright”>

Installing Skins
Unlike code add-ons, skins can be installed by both portal administrators as well as hosts. Skins also
support web-based file upload or FTP based-file upload.

Web-Based File Upload
Follow these four steps to install a new skin into your portal using the web-based installer. Depending
on whether you install the skin from the Admin or the Host menu will determine where the skin files are
saved and which portals in a multi-portal site will have access to the skin.

374

Chapter 14

18_595636 ch14.qxd 5/10/05 9:55 PM Page 374

Step 1
Log in with an Admin or Host account. If you are installing a skin for the current portal, go to the
Admin/Site Settings menu (see Figure 14-9). Skin files will be stored in the individual portal directory.
If multiple portals upload the same skin, then duplicate files will exist in the portal directories.

Figure 14-9

If you want all of the portals in a multi-portal installation to have access to the skin, make sure to log in
with the Host account and select the Host/Host Settings menu (see Figure 14-10).

Figure 14-10

375

Distribution

18_595636 ch14.qxd 5/10/05 9:55 PM Page 375

Step 2
Figures 14-11 and 14-12 show the key portions of the Portal Settings and Host Settings screens. Select the
Upload Skin link to go the File Upload screen.

Figure 14-11

Figure 14-12

Step 3
The File Upload screen provides a simple interface for uploading one or more skins (see Figure 14-13).
Browse to the desired skin package, click OK on the Browse dialog, and click the Add link on the File
Upload page. Use the Upload New File link button to finish installing the module.

Step 4
After installing a new skin package, you should review the upload logs (see Figure 14-14). Errors will be
highlighted in red. If no errors are shown, then the skin is ready for use in your portal. The location of
the installation directory will be displayed at the top of the logs. Note that the directory matches the
name of the skin package and will only vary based on whether the skin is installed from the Admin
menu or the Host menu.

376

Chapter 14

18_595636 ch14.qxd 5/10/05 9:55 PM Page 376

Figure 14-13

Figure 14-14

FTP-Based Installation
To install a new skin using FTP or any file manager, copy the module into the Install/Skin directory of
your DotNetNuke installation. When the ResourceInstaller task runs, it will install this skin using the
standard skin installation code. If an error occurs it will be noted in the task history, which is available
by selecting the History link for the ResourceInstaller task on the Schedule page (shown in Figure 14-7
previously).

377

Distribution

18_595636 ch14.qxd 5/10/05 9:55 PM Page 377

Containers
Containers, like skins, provide the ability to control the appearance of portal. While skins work at the
“page” level, containers are designed for wrapping individual modules that appear on the page. Each
module on a given page may use any one of the installed containers. Containers follow many of the
same packaging and installation processes as skins and differ primarily in the allowable content inside
the html or ascx definition files. Let’s take a look at these differences.

Packaging Containers
Containers follow all of the same packaging rules as skins. Container packages may contain files that are
applied to all container definition files in the package or that are specific to an individual container defi-
nition as outlined in Table 14-10. The behavior and purpose of these files is the same as for skins, and
only the names of the files are different.

Table 14-10: Container Filenames

File Type Global Name Individual Container Name

Configuration File Container.xml [container filename].xml

Style Sheet Container.css [container filename].css

Installing Containers
Containers follow the same procedures for web- and FTP-based installations. For web-based installa-
tions, in Step 2, select the Upload Container link instead of the skin link (shown in Figures 14-11 and
14-12 previously). Containers will be installed in the Portal or Host containers directory. To install con-
tainers using FTP, place the container package in the Install/Container directory.

Language Add-Ons
DotNetNuke 3.0 added support for multiple languages. The DotNetNuke implementation loosely fol-
lows the localization architecture and naming conventions of the upcoming ASP.NET 2.0 framework.
DotNetNuke 3.0 only recognizes a single type of language add-on: a Language Pack. This will likely
change in future DotNetNuke versions as the Language Pack is split into Core Language Packs and
Module Language packs.

Language Packs
The multi-language architecture poses a unique challenge for creating and installing Language Packs
due to the number of directories and files involved. Like code add-ons, Language Packs utilize a mani-
fest file to manage the meta-data necessary to get all of the files installed to the correct directory.

378

Chapter 14

18_595636 ch14.qxd 5/10/05 9:55 PM Page 378

Language Pack Manifest File
The Language Pack manifest file follows a very simple format, as shown in Listing 14-7.

Listing 14-7: Language Pack Manifest File Format

<?xml version=”1.0”?>
<LanguagePack xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” Version=”3.0”>

<Culture Code=”” DisplayName=”” />
<Files>

<File FileName=”” FileType=”” ModuleName=”” FilePath=””/>
</Files>

</LanguagePack>

The Language Pack manifest file relies more on the use of attributes, which is a more compact format
than using simple elements. Table 14-11 lists the key elements of the manifest file.

Table 14-11: Manifest File Elements

Element Name Description

LanguagePack The LanguagePack element is the root element for the manifest file. This ele-
ment must be created exactly as shown in Listing 14-7. The installation code
will validate the file against the listed schemas.

Culture The Culture element defines the culture information associated with the cur-
rent Language Pack. The Culture contains two attributes: Code and Display-
Name. The Code attribute takes a value corresponding to a valid culture
name as defined by the .NET Framework System.Globalization.CultureInfo
class. The DisplayName defines the name to display when selecting lan-
guages in the portal framework.

Files The Files element contains one or more File nodes that provide the informa-
tion necessary to properly install the individual resource file identified by the
File node. See Table 14-10 for more information about the individual
attributes of the File element.

Each language resource included in the Language Pack must be identified by a corresponding file ele-
ment in the manifest (see Table 14-12). The files will be saved based on predefined rules depending on
the file type.

Table 14-12: Manifest File Elements

Attribute Name Description Required

FileName The FileName attribute defines the name of the physical file. Yes
The filename should not include any path information.

Table continued on following page

379

Distribution

18_595636 ch14.qxd 5/10/05 9:55 PM Page 379

Attribute Name Description Required

FileType The FileType attribute defines the type of file identified by Yes
this node and is used by the portal to determine the root
directory where the file will be installed. The FileType must
be one of four values: GlobalResource, AdminResource,
ControlResource, or LocalResource. See Table 14-11 for more
information on these file types.

ModuleName The ModuleName attribute is required for files marked as No
AdminResource or LocalResource. This value identifies the
name of the Admin or DesktopModule that is associated
with this file. The ModuleName is the same as the directory
name where the module is installed.

FilePath The FilePath attribute defines a path relative to the default No
resource path. The file path where the file will be saved is:
[RootPath]\[ModuleName]\[FilePath]\[ResourceDirectory].
The RootPath and ResourceDirectory values are determined
by the file type and are defined in Table 14-11.

The FileType attribute will be used to determine the appropriate RootPath and Resource directory (see
Table 14-13). The RootPath value corresponds to specific directories defined by DotNetNuke. Admin
modules, Controls, and DesktopModules are the only DotNetNuke elements that are permitted to have
local language resources. All other elements should use the Global resources. The Resource directory is
defined to correspond to ASP.NET 2.0 values and are subject to change before the final ASP.NET 2.0
release.

Table 14-13: FileType Values

FileType Description RootPath Resource Directory

GlobalResource Shared resources \ App_GlobalResources

AdminResource Admin module resources \admin App_LocalResources

ControlResource Control resources \controls App_LocalResources

LocalResource DesktopModule resources \Desktopmodules App_LocalResources

To simplify the creation of the manifest file, DotNetNuke includes the ability to generate the Language
Pack including the manifest file. Although the manifest file may be hard to maintain by hand, it is a for-
mat that lends itself well to automatic generation and is easily read during the installation process.
Listing 14-8 shows a partial listing of the generated Deutsch (German) manifest file.

Listing 14-8: German Language Pack Manifest

<?xml version=”1.0”?>
<LanguagePack xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” Version=”3.0”>

380

Chapter 14

18_595636 ch14.qxd 5/10/05 9:55 PM Page 380

<Culture Code=”de-DE” DisplayName=”Deutsch” />
<Files>

<File FileName=”GlobalResources.de-DE.resx” FileType=”GlobalResource” />
<File FileName=”SharedResources.de-DE.resx” FileType=”GlobalResource” />
<File FileName=”TimeZones.de-DE.xml” FileType=”GlobalResource” />
<File FileName=”Announcements.ascx.de-DE.resx” FileType=”LocalResource”

ModuleName=”Announcements” />
<File FileName=”EditAnnouncements.ascx.de-DE.resx” FileType=”LocalResource”

ModuleName=”Announcements” />
...
...
...
...
...
...

<File FileName=”Address.ascx.de-DE.resx” FileType=”ControlResource” />
<File FileName=”DualListControl.ascx.de-DE.resx” FileType=”ControlResource” />
...
...
<File FileName=”Classic.ascx.de-DE.resx” FileType=”AdminResource”

ModuleName=”ControlPanel” />
<File FileName=”IconBar.ascx.de-DE.resx” FileType=”AdminResource”

ModuleName=”ControlPanel” />
...
...

</Files>
</LanguagePack>

Packaging Language Packs
A Language Pack includes three different types of files:

❑ Language Resource File: A language resource file is a standard .NET resource file that includes
a key name and the localized value. A call to the DotNetNuke method GetString(key) returns
the value that corresponds to the key.

❑ Time Zones File: The TimeZones file includes a list of time zones that are recognized by the
DotNetNuke portal.

❑ Manifest File: The manifest file identifies the resource files included in the Language Pack.

DotNetNuke includes the ability to generate Language Packs for any of the languages/cultures that are
currently installed on your portal. Given the number of files and directories involved in creating a com-
plete Language Pack, the generator is the recommended method for creating Language Packs. Not only
does it simplify the creation process, but it also ensures that all necessary files are included and that the
manifest file is properly formatted. Follow these simple steps to create a Language Pack.

Step 1
Log in with the Host account and go to the Languages page on the Host menu (see Figure 14-15).
Although the Admin account has some ability to edit language resources, they do not have the necessary
permissions to Generate or Import Language Packs.

381

Distribution

18_595636 ch14.qxd 5/10/05 9:55 PM Page 381

Figure 14-15

Step 2
The Languages screen provides a number of options for adding new Locales/Languages to your portal.
If you want to generate a Language Pack for a language that does not show up in the Supported Locales
list, you must first add the language to your portal. (See Chapter 4 for more information about adding
additional languages.) Select Create Language Pack from the Action menu or from the links at the bot-
tom of the screen as shown in Figure 14-16.

Figure 14-16

Step 3
Select the Locale for which you want to create a Language Pack and then click the Create link (see
Figure 14-17).

382

Chapter 14

18_595636 ch14.qxd 5/10/05 9:55 PM Page 382

Figure 14-17

Step 4
After the Language Pack has been created, you will be presented with a complete log showing all of the
files added to the Language Pack (see Figure 14-18). You should review the logs for errors, which will be
highlighted in red. Additionally, the log shows you important information about the directory where the
generated Language Pack is stored. The log also provides a link to the File Manager so that you can
download the Language Pack from the portal server.

Figure 14-18

Installing Language Packs
Just like code and skinning add-ons, Language Packs also support two installation methods: web-based
and FTP-based. Language Packs can include hundreds of files, which must be properly referenced in
the manifest file. Any mismatch between the files identified in the manifest and files included in the
Language Pack will result in an error. Additionally, the manifest file controls where each resource will be
installed. An error in the manifest could result in a resource file being installed into the wrong directory.
If the DotNetNuke Language Pack Generator was used to create the Language Pack, the likelihood of
errors during installation is significantly reduced.

383

Distribution

18_595636 ch14.qxd 5/10/05 9:55 PM Page 383

Web-Based File Upload
Follow these four steps to install a new language into your portal using the web-based installer.

Step 1
Log in with the Host account and go to the Languages page on the Host menu (shown previously in
Figure 14-15). Although the Admin account has some ability to edit language resources, it does not have
the necessary permissions to Generate or Import Language Packs.

Step 2
The Languages screen provides a number of options for new Locales/Languages. If you want to gener-
ate a Language Pack for a language that does not show up in the Supported Locales list, then you must
first add the language to your portal. (See Chapter 4 for more information about adding additional lan-
guages.) Select Upload Language Pack from the Action menu or from the links at the bottom of the
screen (see Figure 14-19).

Figure 14-19

Step 3
The File Upload screen appears (see Figure 14-20). Select the file you want to upload and then click the
Upload New File link.

Step 4
After the Language Pack has been uploaded, you will be presented with another File Upload screen.
This screen displays the complete Resource Upload Logs showing all of the files that have been
uploaded (see Figure 14-21). You should review the logs for errors, which will be highlighted in red.
Additionally, the log shows you important information about the directory where the generated
Language Pack is stored, and the log provides a link to the File Manager so that you can download
the Language Pack from the portal server.

384

Chapter 14

18_595636 ch14.qxd 5/10/05 9:55 PM Page 384

Figure 14-20

Figure 14-21

FTP-Based Installation
To install a new Language Pack using FTP or any file manager, copy the Language Pack into the
Install/Language directory of your DotNetNuke installation. When the ResourceInstaller task runs, it
will install this Language Pack using the standard skin installation code. If an error occurs it will be
noted in the task history, which is available by selecting the History link for the ResourceInstaller task
on the Schedule page (shown in Figure 14-7 previously).

385

Distribution

18_595636 ch14.qxd 5/10/05 9:55 PM Page 385

Summary
This chapter completes our discussion of DotNetNuke development. We have progressed from adminis-
tering standard DotNetNuke installations to creating DotNetNuke modules and skins, and finished by
documenting the steps needed to package, distribute, and install these add-ons. You are now ready to
begin work on using DotNetNuke to build professional web sites that fully take advantage of the power,
flexibility, and extensibility provided by the portal.

386

Chapter 14

18_595636 ch14.qxd 5/10/05 9:55 PM Page 386

Resources

The following sections list many helpful resources that bring value to the development or business
aspects of using DotNetNuke. A list of great developer tools are shown in Table A-1. Many of these
tools are used by the DotNetNuke community and Core Team members. Some of these developer
tools are free and others have fees. In Table A-2, several useful custom third-party modules are
shown. As of the date of the publication of this book, each of these modules was free.

Table A-1: Developer Tools

Tool Description

Beyond Compare This tool is helpful for comparing files and
by Scooter Software folders to identify changes in code and to keep
http://www.scootersoftware.com/ directories in synch.

Reflector for .NET This is a class browser for .NET assemblies. It
by Lutz Roeder includes call and called graphs, code viewers
http://www.aisto.com/roeder/ for IL, Visual Basic, Delphi, and C#, dependency
dotnet/ trees, and more.

Nunit This is a powerful unit-testing framework for all
by James W. Newkirk, Michael C. Two, .NET languages. It is a port of the Unit Java
Alexei A. Vorontsov, Philip A. Craig, utility.
and Charlie Poole
http://www.nunit.org/

SQL Compare This tool compares the structures of Microsoft
by Red-Gate SQL Server databases and generates scripts to
http://www.red-gate.com synchronize the databases objects.

Table continued on following page

19_595636 appa.qxd 5/10/05 9:58 PM Page 387

Tool Description

SQL Data Compare This tool compares the data in Microsoft SQL
by Red-Gate Server databases and generates scripts to
http://www.red-gate.com synchronize the data.

ANTS Profiler This is a code and memory profiler for applications
by Red-Gate writing in any .NET language.
http://www.red-gate.com

ANTS Load This is a tool for load testing web sites and
by Red-Gate web services.
http://www.red-gate.com

FileZilla This is a great open-source FTP client.
by Tim Kosse
http://sourceforge.net/
projects/filezilla

CodeSmith This is a powerful freeware template-based code
by Eric J. Smith generator. It can generate code for any ASCII-based
http://www.ericjsmith.net/ language including .NET.
codesmith/

CodeSmith Templates for This is a great collection of CodeSmith templates that
DotNetNuke 3.0 help you create business controllers, business objects,
by Vicenç Masanas stored procedures, data providers, and
http://dnnjungle.vmasanas.net SQLDataProvider code very quickly.

FXCop This tool analyzes .NET-managed code assemblies to
by Microsoft verify that they conform with the Microsoft .NET
http://www.gotdotnet.com/ Framework Design Guidelines.
team/fxcop/

SnagIt This is a great tool for taking screenshots. It can even
by TechSmith take screen captures of scrolling windows (like long
http://www.techsmith.com/ web pages).

Araxis Merge This is an advanced file comparison and merging tool
by Araxis LTD with integrated folder comparison and synchroniza-
http://www.araxis.com/ tion. It allows for two-way or three-way comparisons.

SourceGear Vault Vault is the source control tool used by the Core Team.
by Araxis LTD It is a great source control tool for a distributed
http://www.araxis.com/ development team.

Draco.NET This is a Windows service application that facilitates
by Chive Software Limited continuous integration. It monitors your source code
http://draconet.sourceforge.net/ repository, rebuilds your project, and e-mails the

results automatically.

388

Appendix A

19_595636 appa.qxd 5/10/05 9:58 PM Page 388

Table A-2: Modules

Module Description

SQLView This module displays the results from any
by DNN Stuff SQL query in tabular format.
http://www.dnnstuff.com

Multi Page Content This module can show multiple pages of content
by BonoSoft within a single module. It is helpful for displaying
http://www.dotnetnuke.dk long articles and tutorials in a condensed format.

DnnBB This is an open-source bulletin board/forum module
by Bonosoft and Nimo Software that is easy to use and easy to install.
http://dnnbb.net/

SiteMap The SiteMap module is ideal for displaying a tree
by Speerio, Inc. view of your web site. It only displays links to pages
http://www.speerio.net the user has access to and also creates a hidden list of

hyperlinks for search-engine spiders to crawl.

NewsWire This is a complete solution for managing and
by Speerio, Inc. publishing RSS feed channels. You can publish
http://www.speerio.net categorized RSS feed channels that aggregate portal

and external content.

PhotoViewer This is a photo viewer with a lightbox and integration
by Speerio, Inc. with photo printing services.
http://www.speerio.net

Navigator This is a hierarchical HTML content and link
by Speerio, Inc. organizer for creating categorized documentation
http://www.speerio.net and/or link/newsfeed collections.

Das Blog for DNN Complete port of the popular Das Blog blogger
by Speerio, Inc. (http://www.dasblog.net) for DotNetNuke.
http://www.speerio.net

PhoneGenie This module allows you to look up names and postal
by Inspector IT addresses by typing in a phone number to look up.
http://inspectorit.com/iit/

CSSInclude This module allows you to add a cascading style sheet
by DNN Stuff to a specific tab. This is helpful if you want to over-
http://www.dnnstuff.com ride a skin or container’s CSS on a specific tab.

Enhanced Feedback This is a more configurable feedback module that
by Slalom Services adds some useful features.
http://www.slalomservices.com

Table continued on following page

389

Resources

19_595636 appa.qxd 5/10/05 9:58 PM Page 389

Module Description

Private Messages for DotNetNuke 3.0 This is a messaging module that allows you to send
by Scott McCulloch messages to other users of the portal.
http://www.smcculloch.net/

Reviews This module can be used to include a list of items on
by Vicenç Masanas your site and allow users to review them. The item’s
http://dnnjungle.vmasanas.net type can be defined in each module. For any module

instance you can define a different set of fields, and
configure the properties for posting and approval of
reviews and comments.

InfoMap This module can be used to dynamically display
by Vicenç Masanas information on a picture. It can position user contact
http://dnnjungle.vmasanas.net lists on a map. InfoMap presents a clickable map with

“hot” areas where some information has been entered.
Upon clicking in any given area, the list of contacts for
this area is displayed.

SimpleDownload This module is like the core Documents module but
by Vicenç Masanas with a very simple user interface. It just shows a title
http://dnnjungle.vmasanas.net and an icon for the download. For the rest of the mod-

ule it’s the same as Documents.

TemplatePrint, PagePrint These are skin objects to enhance the printing
by Vicenç Masanas capabilities of DNN. Let you define skins and
http://dnnjungle.vmasanas.net containers for the printing.

390

Appendix A

19_595636 appa.qxd 5/10/05 9:58 PM Page 390

Frequently Asked Questions

The Core Team spends quite a lot of time answering questions in the support forums. Although
there is always a wide array of topics in the forums, some questions about DotNetNuke are asked
again and again. Each released version of DotNetNuke tends to create a new set of frequently
asked questions. The following includes many of the questions that are often asked in the support
forums.

Q: What folder permissions are necessary to run DotNetNuke?

A: You need to grant the account that ASP.NET runs as FULL CONTROL over the root folder of
DotNetNuke. For further information, see Chapter 2, “Installing DotNetNuke.”

Q: Are there any Windows services that tend to interfere with DotNetNuke?

A: The Indexing Service sometimes causes strange errors to surface in ASP.NET. You may see an
error that reads something like “Access is denied: SharpZipLib.” This is usually fixed by disabling
the Indexing Service in the Services management console in Windows.

Q: How can I change the default date format?

A: You can change date format by selecting the locale of the country that matches your date for-
mat. For example, if you wanted an Australian date format (DD/MM/YYYY) you would need to
select the en-AU language in your portal’s site settings.

At the writing of this publication, DotNetNuke currently only has two languages distributed with
the core. These are en-US (English-American) and de-DE (Deutsch). So en-AU would not appear
in our Site Settings list for selecting a portal’s default language.

To create an Australian language, navigate to Host Settings ➪ Languages. In the Add New Locale
section type Australian for the name, en-AU for the key, and click Add. You should see the
Australian language appear in the list of defined locales. Because en-AU is an English-based
culture, it will use the English locale files, but the Australian date format.

20_595636 appb.qxd 5/10/05 10:01 PM Page 391

You can now navigate to Admin ➪ Site Settings of the portal and select Advanced ➪ Other Settings, spec-
ifying the default language for the portal. You can find a complete list of cultures at http://msdn
.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystem
GlobalizationCultureInfoClassTopic.asp.

Q: What is a portal alias?

A: A portal alias is combination of a domain name and the folder that is entered as the URL to access a
portal site. An example of a portal alias is “www.dotnetnuke.com” or even
“www.dotnetnuke.com/myportal.” Portal aliases map a URL to a portal site.

Q: What does the error message “Multiple controls with the same ID ‘ctr_DD’ were found.
FindControl requires that controls have unique Ids” mean?

A: This message may be displayed when a portal module’s user control (.ascx) file has a syntax error in
it. For instance, this error will be displayed when a server-side control doesn’t have an end tag.

Q: What does the error message “ERROR: Could not connect to database specified in
connectionString for SqlDataProvider” mean?

A: The problem is likely that the connection string has not been set in web.config. Otherwise, the
database may not be accessible, possibly due to network connectivity problems or improper database
login credentials.

Q: What does the error message “Not associated with a trusted SQL Server connection” mean?

A: If your SQL Server security authentication is set to Windows Only and you try to connect with a SQL
Server login, you will see this message. You may see this message if the user specified in the connection
string (in web.config) does not have the proper permissions. See Microsoft support article 889615 for
more information.

Q: What does the error message “Access to the path “C:\WebSites\DotNetNuke\Portals\0\
portal.css” is denied” mean?

A: This is usually caused by one of two problems. The permissions may not be set correctly on the
Portals directory. See Chapter 2 for details. This can also happen when a source control application is
open while trying to install DotNetNuke. Try closing the source control application before installing
DotNetNuke.

Q: How do I set the default language for all portals?

A: The best way to set the default language for all portals is to make a Site Template and specify the cul-
ture in the template. The easiest way is to modify the default template (located at /Portals/_default/
DotNetNuke.Template), or at least create a copy of it and modify the default language tag as follows:

<defaultlanguage>en-AU</defaultlanguage>

You can now use that template when creating new portals.

392

Appendix B

20_595636 appb.qxd 5/10/05 10:01 PM Page 392

Q: Why am I receiving the following error when trying to debug in Visual Studio?
“Error while trying to run project: Unable to start debugging on the web server. The project is not

configured to be debugged.”

A: This could be caused by one of a few possible issues. First check web.config to make sure you have
set “debug” to true in the Compilation node. Also, if you’ve installed Microsoft’s URLScan filter on your
machine (or are using win2003 where it is automatically installed), then you will have to edit the
urlscan.ini file and add “DEBUG”(case sensitive) into the “[allowverbs]” section. See Microsoft support
article 310588 for more details.

URLScan is often installed as part of the larger IIS Lockdown tool. This is an issue with Visual Studio
debugging and not a DotNetNuke issue.

393

Frequently Asked Questions

20_595636 appb.qxd 5/10/05 10:01 PM Page 393

20_595636 appb.qxd 5/10/05 10:01 PM Page 394

System Message Tokens

Table C-1: Standard HostSettings Properties

Property Name Description

ControlPanel This setting determines whether the new 3.0 Control Panel is dis-
played or the version 2.0.

Copyright Display the copyright information in the Page Title. (Y/N)

DemoPeriod The number of days that a demo portal will be active.

DemoSignup Allow users to sign up for a demo portal. (Y/N)

DisableUsersOnline Disable the UsersOnline scheduler tasks. (Y/N)

FileExtensions List of acceptable file extensions that can be uploaded to the site
using any of the file upload mechanisms.

HostCurrency The default currency used when making payments for Host
services.

HostEmail The e-mail address of the Portal Host.

HostFee Enter the base fee for site hosting.

HostPortalId The Id of the default portal.

HostSpace The amount of file space allowed for an account in megabytes.

HostTitle The name of the Hosting Account. This name is used throughout
the site for identifying the Host.

HostURL The URL for the Host web site.

Table continued on following page

21_595636 appc.qxd 5/10/05 10:06 PM Page 395

Property Name Description

PaymentProcessor The Payment Processing gateway used for handling payments from
client sites.

PerformanceSetting Determines the optimization level for site performance vs. memory con-
sumption. (1-4)

ProxyPort The port number of the proxy server.

ProxyServer The server used for proxying web requests.

SchedulePollingRate Defines the interval is between scheduled task execution cycles.

SchedulerMode Setting for determining which method to use for executing scheduled
tasks in the Scheduling Provider.

SiteLogBuffer How many items to hold in the SiteLog before purging the log to disk.

SiteLogHistory The number of days of activity to keep in the SiteLog.

SiteLogStorage Identifies storage location for the SiteLog (File or Database).

SkinUpload Determines whether skins can be uploaded by Portal Administrators.

SMTPAuthentication The SMTP authentication method: Anonymous, Basic, or NTLM.

SMTPServer The URL of the SMTP server used for sending e-mail messages.

SMTPUsername The name of user account used for sending messages.

UseCustomError Determines whether the portal displays the standard DotNetNuke
Messages custom error messages or whether raw ASP.NET errors are shown.

UseFriendlyUrls Enable or disable the URL rewriter used for implementing
FriendlyURLs.

UsersOnlineTime The length of the user’s online buffer in minutes. If a user is inactive for
this period of time, they will be marked as offline.

Table C-2: Standard PortalSettings Properties

Property Name Description

PortalId The id of the current portal.

PortalName The name of the current portal. This name is used for branding the portal.

HomeDirectory The folder name associated with the current portal. The name is a rela-
tive path to the portal root directory.

LogoFile The graphic file used for displaying the Portal Logo.

FooterText The information displayed in the Copyright skin object.

ExpiryDate The date that the hosting contract for the portal expires.

396

Appendix C

21_595636 appc.qxd 5/10/05 10:06 PM Page 396

Property Name Description

UserRegistration Determines whether user registration is required and whether the regis-
tration is private (accounts created by the Portal Administrator), public
(users can register for their own account and gain immediate access), or
verified (users can register their own account but only get access after
verification of e-mail address).

BannerAdvertising Enables or disables use of default banner ads.

Currency Default currency used for Portal services.

AdministratorId The ID of the primary Portal Administrator.

Email E-mail address for the Portal Administrator (this is generally set to a
support e-mail address).

HostFee The monthly charge the portal pays for hosting services.

HostSpace The maximum amount of disk space allocated to this web site.

AdministratorRoleId The RoleId of the Administrators role for the portal.

AdministratorRoleName The RoleName of the Administrators role for the portal.

RegisteredRoleId The RoleId of the Registered Users role for the portal.

RegisteredRoleName The RoleName of the Registered Users role for the portal.

Description Web site description. This information will be included in the meta tags
used by search engines.

KeyWords Specific meta tag keywords.

BackgroundFile A graphic file used for the portal background.

SiteLogHistory How many days to keep the SiteLog history for the portal.

AdminTabId The Page Id of the Admin page (PageId is the DotNetNuke 3 equivalent
of TabID). This is the parent page for all Portal Administration pages.

SuperTabId The Page Id of the Host page. This is the parent page for all Host
Administration pages.

SplashTabId The Page Id to use when no page is specified in the URL.

HomeTabId The Page Id to use as the portal Home page. If no SplashTabId is desig-
nated, the HomeTabId is used.

LoginTabId The Page Id to use when the user selects the login link. This page should
include the Login module.

UserTabId The Page Id to use when registering users or editing user profiles.

DefaultLanguage The default locale of the web site. This will determine the language used
when anonymous users visit the site.

TimeZoneOffset The time zone where the web server is located.

Version The build number for the current portal application.

397

System Message Tokens

21_595636 appc.qxd 5/10/05 10:06 PM Page 397

Table C-3: Standard UserInfo Properties

Property Name Description

UserID Unique identifier for a specific portal user.

Username The logon name of the specific user.

FirstName The user’s first name.

LastName The user’s last name.

FullName First name and last name with a single space between.

PortalID The PortalID to which this user belongs.

IsSuperUser Does the user have “Host” permissions?

AffiliateID The unique AffiliateID identifying the link used to navigate to the por-
tal. When a user follows an affiliate link and then registers on the portal,
the AffiliateID is then associated with the user.

Table C-4: Standard UserMembership Properties

Property Name Description

Password The user’s password if available.

Email E-mail address of the user.

Username The login name of the user.

LastLoginDate The last date/time the user logged in to the portal.

CreatedDate The date/time when the user account was created.

Approved If the user’s account has been approved for access to the web site.

LockedOut If the user’s account has been locked due to potential security issues.

Table C-5: Standard UserProfile Properties

Property Name Description

FirstName User’s first name.

LastName User’s last name.

Street Street address.

City City.

398

Appendix C

21_595636 appc.qxd 5/10/05 10:06 PM Page 398

Property Name Description

Region State, Province, or Region for the user. Primarily used for U.S. and
Canada.

PostalCode The postal code for the user’s mailing address.

Country The country where the user lives.

Unit The apartment, post office box, or suite for the user’s address.

Telephone Telephone number for the user.

Cell Mobile phone number.

Fax Fax number.

Website A personal or corporate web site for the user.

IM Instant messenger contact ID.

TimeZone The user’s default time zone. This is used for translating times from the
SiteLog.

PreferredLocale The user’s preferred locale. This determines the language used for all
static content on the portal.

399

System Message Tokens

21_595636 appc.qxd 5/10/05 10:06 PM Page 399

21_595636 appc.qxd 5/10/05 10:06 PM Page 400

In
de

x

Index

A
abstraction, data, 285–287
“Access to the path ...portal.css” error, 392
Account Login module, 61
accounts

host account, 114
SuperUser accounts, 114, 115
user accounts, 100–101
Windows account used to run DotNetNuke, 117

AcquireRequestState event, HTTP modules, 234
ActionBase class, 243
[ACTIONBUTTON] object, 365
ActionEventArgs class, 243
ActionEventHandler class, 243
Actions control, 348
actions, customized. See IActionable interface
[ACTIONS] object, 365
ADA (American Disabilities Association), 15
Add function, Page Functions menu, 57
AddEvent stored procedure,

Events module, 276–277
AddLocale() method, Localization class, 224
add-ons, 353. See also code add-ons

language add-ons (language packs)
definition of, 378
file types for, 381
installing, 383–385
manifest file for, 379–381
packaging for deployment, 381–383

skinning add-ons
containers, packaging and installing, 378
skins, configuration file for, 372–374

skins, file types for, 370–371
skins, installing, 374–377
skins, packaging, 370–372

Address control, 317
administrator

Host
creating SuperUser account for, 114
definition of, 113–114
e-mail address for, setting, 117
title for, setting, 117
URL, setting, 117

Portal Administrator
choosing, 81
Control Panel used by, 123
definition of, 65–66

administrator pages
container for, 77
skin for, 77, 336

Administrator role
folder permissions for, 92
page viewing and editing permissions for, 89
for Portal Administrator, 65, 81
predefined in Security Roles page, 83

AdministratorId property, PortalSettings, 397
AdministratorRoleId property,

PortalSettings, 397
AdministratorRoleName property,

PortalSettings, 397
AdminTabId property, PortalSettings, 397
advertising banners

adding to page, 161–163
creating for vendors, 103–105

22_595636 bindex.qxd 5/10/05 10:06 PM Page 401

AffiliateID property, UserInfo, 398
affiliates

adding vendors as, 105–106
tracking, 107

aliases for portals, 127, 392
Alignment attribute, [LINKS], 345
alignment, of modules, 158
All Users role, 84
Alstad, Kent (mentor), 8
American Disabilities Association (ADA), 15
Announcements module. See also Events module

adding to page, 155–161
definition of, 61, 155
description (content) of, 160
expiration date for, 161
link in, 161
order for viewing, 161
settings specific to, 157, 160–161
title for, 160

ANTS Load (Red-Gate), 388
ANTS Profiler (Red-Gate), 388
Appearance

Host Settings page, 118–119
Site Settings page, 76–77

Application Blocks (Microsoft), 281
Application Resources, 223
Approved property, UserMembership, 398
Araxis LTD

Araxis Merge, 388
SourceGear Vault, 388

Araxis Merge (Araxis LTD), 388
architecture

of containers, 154
of DotNetNuke

Business Logic layer, 195, 197–198
Data Access layer, 195, 198–199
Data layer, 195, 199–201
description of, 195
Presentation layer, 195, 196–197

of modules, 151–154
of pages, 153
of portals, 152

.ascx filename extension
for private assembly archives

(module add-ons), 361
for skin and container packages, 335, 371
for skins, 331

ASP.NET
account name being used to run

DotNetNuke, 117
Forums page for, 3
IBuySpy Portal as example of, 2
version 2.0, using with DotNetNuke, 202
version requirements for, 31
worker process required for Scheduler, 143

ASP.NET Enterprise Manager, 32
Audit control, 317
AuthenticateRequest event, HTTP modules, 234
AuthorizeRequest event, HTTP modules, 234
Available Tasks, Scheduler, 140

B
backcolor attribute, [SOLPARTMENU], 339
BackgroundFile property, PortalSettings, 397
banner advertising

adding to page, 161–163
creating for vendors, 103–105

Banner Advertising setting, 81
Banner module

adding to page, 161–163
border for, 162
definition of, 61, 161
groups of, 162
number of times to display, 162
orientation of, 162
row dimensions for, 162
settings specific to, 162
source of banner, 162
types of, 162

[BANNER] object, 338, 344, 366
BANNER skin object, 81
BannerAdvertising property, PortalSettings, 397
Baron, Andy (MCW Technologies), 8
Base Method Implementations region, Settings

control, 315–316
BasePortalException class, 216
BeginRequest event, HTTP modules, 234
Berkeley Software Distribution (BSD) license, 13
Beyond Compare (Scooter Software), 387
Board of Directors, Core Team, 26
body background, for portal, 76
BonoSoft

DnnBB, 389
Multi Page Content, 389

402

AffiliateID property, UserInfo

22_595636 bindex.qxd 5/10/05 10:06 PM Page 402

border
for Banner module, 162
for modules, 158

BorderWidth attribute
[BANNER], 344
[LOGO], 345

[BREADCRUMB] object, 338, 344, 366
Brinkman, Joe (Core Team), 19, 26
BSD (Berkeley Software Distribution) license, 13
Burzi, Francisco (“nuke” slogan), 11
Business Logic layer

definition of, 195, 197–198
development of, 289–297

C
caching

in Business Logic layer, 197
of modules, 159
settings for, 124–125

Calendar control, 302
Caron, Dan (Core Team), 19, 25, 26
cascading style sheet, for skins, 347–348
Catch Up Enabled, Scheduler, 141
CBO Controller class, 192
CBO Hydrator, 192–195
CBOs (Custom Business Objects), 190–195, 295
Cell property, UserProfile, 399
child portals, 56, 128–129
Chive Software Limited, Draco.NET, 388
City property, UserProfile, 398
cleardefaults attribute, [SOLPARTMENU], 344
client-side scripts, in Presentation layer, 196
code add-ons

module add-ons
definition of, 354
file types for, 360–361
FTP-based installation of, 364
installing, 362–365
module manifest file for, 354–360
packages for, 360–361
resource files for, 361
third-party modules, 260, 389–390
web-based installation of, 362–364

provider add-ons, 369–370
skin object add-ons

list of, 365–367
manifest file for, 368

code-behind class
Edit control, 321
Settings control, 314–315
View control, 302–304

code-behind regions
Edit control, 321–323
Settings control, 315–316
View control, 306

CodeSmith (Eric J. Smith), 388
CodeSmith Templates for DotNetNuke 3.0

(Vicenç Masanas), 265, 388
color, of modules, 158
compressed files

decompressing on upload, 94
for module add-ons, 360, 361
for skins, 348, 371

configuration file (web.config)
database connection string in, 44–45, 392
default data provider in, 282
Provider Model API settings in, 190
Scheduler settings in, 143

configuration of DotNetNuke, 44–45
connection string, database, 44–45, 48, 392
Contacts module, 61, 163. See also Feedback

module
container add-ons, 378
container package, 335–336
containers

for administrator pages, 77
applying to web site, 91
architecture of, 154
default

for host, choosing, 118
for pages, 88
for portal, choosing, 71–72

definition of, 59–60, 154
for host, uploading, 118
manifest file for, 349
for module, 159
in Presentation layer, 196
for skins, 348–352
uploading, permissions for, 124, 130–131

ContentPane, 58–59
[CONTENTPANE] object, 338, 345, 350,

351, 366
control elements, module manifest file, 357–358
Control Panel

definition of, 67–68
Help button, 75

403

Control Panel

In
de

x

22_595636 bindex.qxd 5/10/05 10:06 PM Page 403

Control Panel (continued)
Preview button, 75
setting, for Portal Administrators, 123
Site Wizard, 68–74

Controller class, 265, 293–297
ControlPanel property, HostSettings, 395
controls, user

definition of, 202
Edit control

code regions, 321–323
code-behind class, 321
definition of, 264, 301
EditEvents control, 316–321
Event Handlers region, 323–327
Private Members region, 323
user controls, list of, 316–317

in Events module, list of, 300–301
syntax errors in, 392
View control

Calendar control, 302
code-behind class, 302–304
code-behind regions, 306
DataList control, 301–302
definition of, 264, 300
Event Handlers region, 310–313
optional interfaces, 304–305
Private Methods region, 306–309
Public Methods region, 309–310

Copy function, Page Functions menu, 57
copyright credits, in browser title bar, 118, 119
[COPYRIGHT] object, 338, 345, 366
Copyright property, HostSettings, 395
Copyright setting, 81, 82
COPYRIGHT skin object, 81
Core Team, DotNetNuke, 13–14, 15–17, 19, 26
“Could not connect to database specified”

error, 392
Country property, UserProfile, 399
Craig, Philip A. (Nunit), 387
CreatedDate property, UserMembership, 398
.css filename extension, 335, 371
CssClass attribute

[BREADCRUMB], 344
[COPYRIGHT], 345
[CURRENTDATE], 345
[DOTNETNUKE], 345
[HELP], 345
[HOSTNAME], 345
[LINKS], 345
[LOGIN], 344

[TERMS], 345
[USER], 345

CSSInclude (DNN Stuff), 389
currency, default for host, 120
Currency property, PortalSettings, 397
[CURRENTDATE] object, 338, 345, 366
Custom Business Objects (CBOs), 190–195, 295
custom locale, 222
Custom Portal Locale screen, 95–96
Custom token, e-mail templates, 98

D
Das Blog for DNN (Speerio, Inc.), 389
data abstraction, 285–287
Data Access Application Block (Microsoft), 199
Data Access layer

definition of, 195, 198–199
development of, 280–285
in version 2.0 of DotNetNuke, 22

Data layer, 195, 199–201
data model for users and roles, 203–205
Data Provider

configuring, 190
in Data Access layer, 198
definition of, 189
determining, 116
in module add-ons, 361
SQLDataProvider class for, 280–285

database
connection string

invalid, 48
in web.config file, 44–45, 392

creating at installation, 32–34
design of, for modules, 274–280
planning requirements for, 260
providers, 280–285
stored procedures for Events module, 276–280,

284–285
tables for Events module, 274–275
user for, creating at installation, 34–37

database server, architecture of, 195
database software requirements, 31
{databaseOwner} tag, 200
DataList control, 301–302
DataProvider class, 265, 281, 286–287
<datascript> node, installation template, 52
DateFormat attribute, [CURRENTDATE], 345
date format, changing, 391–392
Debug setting, web.config file, 143

404

Control Panel

22_595636 bindex.qxd 5/10/05 10:06 PM Page 404

debugging
error message during, 393
for schedule items, 143

default portal locale, 222
Default.aspx page

definition of, 196
skins processed by, 332–333

DefaultLanguage property, PortalSettings, 397
delegates, 241
Delete function, Page Functions menu, 57
DeleteEvent stored procedure,

Events module, 277
Demo Signup, 120
DemoPeriod property, HostSettings, 395
DemoSignup property, HostSettings, 395
description (content), of Announcements

module, 160
<description> node, installation template, 52
description of web site, choosing, 73
Description property, PortalSettings, 397
design pattern used by DotNetNuke, 188–190
<desktopmodules> node, installation

template, 53
developer tools, 387–388
development of modules

business logic for, 289–297
data abstraction for, 285–287
database design for, 274–280
database providers for, 280–285
Edit control

code regions, 321–323
code-behind class, 321
definition of, 264, 301
EditEvents control, 316–321
Event Handlers region, 323–327
Private Members region, 323
user controls, list of, 316–317

modules, DotNetNuke interface to, 265–270
planning, 259–261
resource requirements, 261
user controls, list of, 300–301
View control

Calendar control, 302
code-behind class, 302–304
code-behind regions, 306
DataList control, 301–302
definition of, 264, 300
Event Handlers region, 310–313
optional interfaces, 304–305

Private Methods region, 306–309
Public Methods region, 309–310

Visual Studio .NET project, configuring, 262–265
directory, installation, 30
disabled pages, 88
DisableUsersOnline property, HostSettings, 395
Discussions module, 61, 163–164
disk space limit for portal, 127
display attribute, [SOLPARTMENU], 340
.dll filename extension, 360
DNN. See DotNetNuke
.dnn filename extension, 360
DNN Stuff

CSSInclude, 389
SQLView, 389

DnnBB (BonoSoft and Nimo Software), 389
DNNMembership HTTP module, 240
Documents module, 61, 164–165
DotNetNuke (DNN). See also add-ons; installation

of DotNetNuke
architecture of

Business Logic layer, 195, 197–198
Data Access layer, 195, 198–199
Data layer, 195, 199–201
description of, 195
Presentation layer, 195, 196–197

branding of IBuySpy Workshop as, 11
compliance with ADA, 15
Core Team for, 13–14, 15–17, 19, 26
development challenges, 18–19
hardware requirements, 30
licensing options for, 12–13
Manifest document for, 14
Microsoft sponsoring, 17–18
Microsoft’s interest in, 26
software requirements, 31
source control system for, 15
technologies used by, 187–188
trademark for, 17
upgrading, 51, 253
version 1.0 release, 18
version 2.0 release, 21–22
version 3.0 release, 27
version of

determining, 116
supporting multiple, 260
in title bar, 118

web site for, 22–28
XXL fork of, 16–17

405

DotNetNuke (DNN)

In
de

x

22_595636 bindex.qxd 5/10/05 10:06 PM Page 405

[DOTNETNUKE] object, 338, 345, 366
DotNetNuke.Common namespace, 205
DotNetNuke.Data namespace, 205
DotNetNuke.Data.SqlDataProvider script, 199
DotNetNuke.Entities namespace, 206
DotNetNuke.Framework namespace, 206
DotNetNuke.Modules namespace, 206
DotNetNuke.Schema.SqlDataProvider script, 199
DotNetNuke.Security namespace, 206
DotNetNuke.Services namespace, 206
DotNetNuke.Services.Exceptions

namespace, 216
DotNetNuke.Services.Log.EventLog

namespace, 208
DotNetNuke.SetUp.SqlDataProvider script, 199
DotNetNuke.UI namespace, 206
downarrow attribute, [SOLPARTMENU], 342
downloading DotNetNuke, 32
Draco.NET (Chive Software Limited), 388
drag and drop, for modules, 178, 179
[DROPDOWNACTIONS] object, 350, 366
Dual List control, 317

E
Edit control

code regions, 321–323
code-behind class, 321
definition of, 264, 301
EditEvents control, 316–321
Event Handlers region, 323–327
Private Members region, 323
user controls, list of, 316–317

Edit Log Settings page, 131–132
Edit Schedule page, 140–141
EditEvents class, 321–327
EditEvents control, 316–321
.EditText filename extension, 223
EditURL function, 328–329
e-mail

of Host, setting address for, 117
newsletters, 106–107
notification of log events, 132–133

Email property
PortalSettings, 397
UserMembership, 398

e-mail templates, 98–100
end date, for modules, 157
EndRequest event, HTTP modules, 235

Enhanced Feedback (Slalom Services), 389
Error event, HTTP modules, 235
error handling, helper functions for, 327–328
error messages. See also troubleshooting

“Access to the path ...portal.css”, 392
“Could not connect to database specified”, 392
displaying based on type of user, 118, 119
“Error while trying to run project: Unable to start

debugging...”, 393
in log for module installation, 136
“Multiple controls with the same ID”, 392
“Not associated with a trusted SQL Server

connection”, 392
“Error while trying to run project: Unable to start

debugging...” error, 393
ErrorContainer class, 216
.ErrorMessage filename extension, 223
Event Handlers region

Edit control, 323–327
View control, 310–313

event log classification, 208
event logging

API classes for, 208–209
buffering, 125
in Business Logic layer, 197
definition of, 208
history of development of, 25
log classifications for, 208
log types for, 208, 209–210
logging events, 210–214
monitoring with Log Viewer, 109–111

EventInfo class, 290–293
EventLogController class, 209–214
Events module. See also Announcements module

alternate text for, 167
Controller class, 265, 293–297
data abstraction class for, 285–287
database stored procedures for,

276–280, 284–285
database tables for, 274–275
definition of, 62, 166–167
description of, 167
Edit control

code regions, 321–323
code-behind class, 321
definition of, 264, 301
EditEvents control, 316–321
Event Handlers region, 323–327
Private Members region, 323
user controls, list of, 316–317

406

[DOTNETNUKE] object

22_595636 bindex.qxd 5/10/05 10:06 PM Page 406

EventInfo class, 290–293
expiry date for, 168
frequency of, 167
image for, 167
Settings control, 313–316
SQLDataProvider class for, 280–285
start date for, 168
time of day for, 168
title for, 167
user controls, list of, 300–301
View control

Calendar control, 302
code-behind class, 302–304
code-behind regions, 306
DataList control, 301–302
definition of, 264, 300
Event Handlers region, 310–313
optional interfaces, 304–305
Private Methods region, 306–309
Public Methods region, 309–310

Events table, Events module, 274–275
EventsController class, 293–297
exception handling

adding exceptions to log, 220–221
API classes for, 216–217, 224–229
definition of, 216
history of development of, 25
logging exceptions, 214–216
logging exceptions thrown outside

a module, 219–220
logging exceptions thrown within

a module, 217–219
logging exceptions thrown within

a scheduled task, 221
exception log classification, 208
exception logging, 109–111, 214–221
Exception Management HTTP module, 239
exception management, in Business

Logic layer, 197
ExceptionInfo class, 216
ExceptionLogController class, 214–216
Exceptions class, 217–221
expiry date

for Announcements module, 161
for Events module, 168
portal, 127

ExpiryDate property, PortalSettings, 396
exporting content to a file, 180

ExportModule() method, IPortable interface,
251, 252

extensions. See add-ons; filename extensions

F
FAQs module, 62, 168
Fax property, UserProfile, 399
Feedback module, 62, 169. See also Contacts

module
fees

hosting fee, 120, 127
service fees for user roles, 80–81, 85

field-level help, 58
fields, adding to module, 174–175
file elements, module manifest file, 358
File Manager

folder permissions, 92–93
FTP, using with, 94
Host view of, 137–138
uploading files, 94

file permissions
of host, 31
insufficient file permissions, 48–49
setting, 38–39

FileController CBO class, 194
FileExtensions property, HostSettings, 395
FileInfo CBO class, 191–192
filename extensions

for downloading, 164–165
for portal templates, 129
for private assembly archives (module add-ons),

360–361
for resource files, 95, 222–223
for skin and container packages, 335, 348,

370–371
for skins, 331
for uploading, 124

files
documents for download by users, 61, 164–165
uploading, 94, 124

FileZilla (Tim Kosse), 388
FirstName property

UserInfo, 398
UserProfile, 398

folder elements, module manifest file, 355–356
folder permissions, 92–93, 391
fontbold attribute, [SOLPARTMENU], 341
fontnames attribute, [SOLPARTMENU], 341

407

fontnames attribute, [SOLPARTMENU]

In
de

x

22_595636 bindex.qxd 5/10/05 10:06 PM Page 407

fontsize attribute, [SOLPARTMENU], 341
footer, for modules, 157
FooterText property, PortalSettings, 396
forcedownlevel attribute, [SOLPARTMENU], 340
forcefullmenulist attribute, [SOLPARTMENU], 342
forecolor attribute, [SOLPARTMENU], 339
Forums page, ASP.NET, 3
frames, displaying another web site’s content in,

62, 169–170
FriendlyUrl Provider, enabling, 125
FTP

installing language add-ons, 385
installing module add-ons, 364
installing skinning add-ons, 377
transferring files, 94

FullName property, UserInfo, 398
FXCop (Microsoft), 388

G
GetCalendarEvents method, Events

module, 306–309
GetEvent stored procedure, Events

module, 277–278
GetEvents stored procedure, Events module, 278
GetEventsByDate stored procedure, Events

module, 278–279
GetHelpUrl() method, Localization class, 224
GetResourceFile() method, Localization

class, 224
GetString() method, Localization class, 224–226
GetSupportedLocales() method, Localization

class, 224
GetSystemMessage() method, Localization class,

224, 226–229
GetTimeZones() method, Localization class, 224
.gif filename extension, 335, 371
Global Resources, 223–224
globalization

languages
default, 82, 95, 392
e-mail templates for, 98–100
for Privacy Statement, 100
resource files for, 95–98
support for, 144
for Terms of Use, 100
verifying resource files for, 145–146

locale
creating, 144–145
date formats and, 391–392

definition of, 222
time zone for, 146–147
types of, 222

localization
in Business Logic layer, 197
translations, 222–224, 224–229

GNU Public License, 12, 13
GotDotNet web site, 15
GPL (GNU Public License), 12, 13
graphics (images)

adding to pages, 62, 170–171
for Events module, 167
for skins, 337, 348

Guthrie, Scott (ASP.NET), 9–10, 11

H
hardware requirements, 30
.Header filename extension, 222
header, for modules, 157
help

field-level help, 58
Help button, Control Panel, 75
for modules, 180

Help button, Control Panel, 75
Help control, 317
.Help filename extension, 222
[HELP] object, 338, 345, 366
helper functions

error handling, 327–328
navigation URLs, 328–329

hidden pages, 88
highlightcolor attribute, [SOLPARTMENU], 339
history of log results, 141
Home Directory, path for, 79
Home Page, choosing, 79
HomeDirectory property, PortalSettings, 396
HomeTabId property, PortalSettings, 397
Hopkins, Bruce (Core Team), 15
Host

creating SuperUser account for, 114
definition of, 113–114
e-mail address for, setting, 117
title for, setting, 117
URL, setting, 117

host account, 114
Host Details, Host Settings page, 117
Host menu, 114–115
host name for system running DotNetNuke, 117
<host> node, installation template, 52

408

fontsize attribute, [SOLPARTMENU]

22_595636 bindex.qxd 5/10/05 10:06 PM Page 408

Host Settings page
Appearance settings, 118–119
container uploads, enabling, 124
Control Panel, setting, 123
file upload extensions, setting, 124
FriendlyUrl Provider, enabling, 125
Host Details settings, 117
Payment Settings, 119–121
performance settings, 124–125
Proxy Settings, 121
scheduled task settings, 125
Site Configuration settings, 116–117
site log storage, settings for, 123
skin uploads, enabling, 124
SMTP Server Settings, 122
updating settings in, 116
upgrade logs, viewing, 116
UsersOnline settings, 124

Host token, e-mail templates, 98
HostCurrency property, HostSettings, 395
HostEmail property, HostSettings, 395
HostFee property

HostSettings, 395
PortalSettings, 397

hosting fee, 120, 127
hosting requirements, 31
[HOSTNAME] object, 338, 345, 366
HostPortalID property, HostSettings, 395
HostSettings properties, 395–396
HostSpace property

HostSettings, 395
PortalSettings, 397

HostTitle property, HostSettings, 395
HostURL property, HostSettings, 395
Hover menu for modules, 178, 179–182
Howard, Rob (ASP.NET), 8, 17, 28
.htm filename extension, 335, 370
HTML

creating skins using, 336–337, 338, 346–347
rendering with Text/HTML module, 63, 173–174

.html filename extension, 331, 335, 370
HTTP modules

configuration for, 232–234
definition of, 232
DNNMembership, 240
events common to, 234–235
Exception Management, 239
Personalization, 240
URL Rewriter, 236–239
Users Online, 239–240

HTTP Pipeline, 232–233
HttpApplication object, 232

I
IActionable interface

definition of, 241–242
displaying menu, 248–249
Module Action API classes, 242–243
ModuleAction class, 243–244
ModuleActionCollection class, 246
ModuleActionType class, 245
notify module of action, 249–250
in Optional Interfaces region, Events Module,

304–305
registering event handler, 247–248

IBuySpy Portal
description of, 2
enhancements to, 4
forum on ASP.NET for, 3
history of development of, 2–5

IBuySpy Workshop
initial popularity of, 6–8
initial release of, 5
Microsoft’s interest in, 9–10
rebranding of, as DotNetNuke (DNN), 11
subscription service for, 8–9

icon
for modules, 158
for pages, 88

[ICON] object, 350, 365
iconbackgroundcolor attribute,

[SOLPARTMENU], 339
iconwidth attribute, [SOLPARTMENU], 340
ID attribute, [CONTENTPANE], 345
IFrame module, 62, 169–170
IHttpModule interface, 234
IIS Applications, 40–41, 43
IIS (Internet Information Services), creating

web site using, 39–44
IM property, UserProfile, 399
Image module, 62, 170–171
images

adding to pages, 62, 170–171
for Events module, 167
for skins, 337, 348

IMC (Inter-Module Communication), 253–254
IModuleCommunicator interface, 253–254
IModuleListener interface, 254

409

IModuleListener interface

In
de

x

22_595636 bindex.qxd 5/10/05 10:06 PM Page 409

importing content from another portal, 180
ImportModule() method, IPortable interface, 252
Indexing Service, causing ASP.NET errors, 391
IndexProvider, 255
inetmgr command, 39
Info class, 265, 290–293
InfoMap (Vicenç Masanas), 390
inheritance, 240–241
Inspector IT, PhoneGenie, 389
installation of DotNetNuke

in Business Logic layer, 198
clean install, 50–51
configuration, 44–45
database, creating, 32–34
database user, creating, 34–37
downloading DotNetNuke, 32
file permissions, setting, 38–39
hardware requirements, 30
hosting requirements, 31
installation file, extracting, 32
process followed by DotNetNuke during, 49–51
software requirements, 31
templates for, 51–53
testing, 45–47
troubleshooting, 48–49, 116
upgrade logs for, viewing, 116
upgrading, 51, 253
virtual directory for, 30
web site, creating, 39–44

installation scripts, in Data layer, 199
insufficient file permissions, 48–49
interfaces, 241. See also module interfaces
Inter-Module Communication (IMC), 253–254
Internet Information Server (Microsoft), 31
Internet Information Services (IIS), creating web

site using, 39–44
invalid connection string, 48
IPortable interface

definition of, 251–253
implemented by Events module, 296–297
in Optional Interfaces region, Events Module,

304–305
Isakson, Cory (Rainbow Portal), 19
ISearchable interface

definition of, 254–257
implemented by Events module, 295–296
in Optional Interfaces region, Events Module,

304–305

IsSuperUser property, UserInfo, 398
IUpgradable interface, 253–254

J
JavaScripts, client-side, 196
.jpeg filename extension, 335, 371
.jpg filename extension, 335, 371

K
keywords for web site, choosing, 73
KeyWords property, PortalSettings, 397
Kosse, Tim (FileZilla), 388

L
Label control, 317, 320
language add-ons (language packs)

definition of, 378
file types for, 381
installing, 383–385
manifest file for, 379–381
packaging for deployment, 381–383

Language Editor screen, 97–98
language packs. See language add-ons
language resource file, 381
languages. See also locale; localization

default
for all portals, 392
changing, 95
choosing, 82

e-mail templates for, 98–100
for Privacy Statement, 100
resource files for, 95–98
support for, 144
for Terms of Use, 100
verifying resource files for, 145–146

Languages page, 144
LastLoginDate property, UserMembership, 398
LastName property

UserInfo, 398
UserProfile, 398

leftseparator attribute, [SOLPARTMENU], 343
Leftseparatoractive attribute,

[SOLPARTMENU], 343
leftseparatorbreadcrumb attribute,

[SOLPARTMENU], 343

410

importing content from another portal

22_595636 bindex.qxd 5/10/05 10:06 PM Page 410

leftseparatorbreadcrumbcssclass attribute,
[SOLPARTMENU], 344

leftseparatorcssclass attribute,
[SOLPARTMENU], 344

Level attribute, [LINKS], 345
level attribute, [SOLPARTMENU], 342
licensing options for DotNetNuke, 12–13
[LINKACTIONS] object, 350, 366
links

adding to web sites, 62, 171–172
in Announcements module, 161

Links module
definition of, 62, 171–172
modifying container of, 59

[LINKS] object, 338, 345, 367
Lists page, 148–149
LoadCultureDropDownList() method,

Localization class, 224
LoadtimeZoneDropDownList() method,

Localization class, 224
Local Resources, 223
locale. See also languages

creating, 144–145
date formats and, 391–392
definition of, 222
time zone for, 146–147
types of, 222

localization. See also languages
in Business Logic layer, 197
translations

performing, 224–229
resource files containing, 222–224

Localization class, 224–229
LocalizeDataGrid() method, Localization

class, 224
LocalizeRole() method, Localization class, 224
LockedOut property, UserMembership, 398
log classification, 208
log types, 208, 209–210
Log Viewer

configuring, 131–133
Host view of, 131
using, 109–111

LogController class, 208
LogDetailInfo class, 208
LogException() method, Exceptions class,

220–221

logging
Edit Log Settings page, 131–132
e-mail notification of log events, 132–133
event logging

API classes for, 208–209
buffering, 125
in Business Logic layer, 197
definition of, 208
history of development of, 25
log classifications for, 208
log types for, 208, 209–210
logging events, 210–214
monitoring with Log Viewer, 109–111

exception logging, 214–221
history of log results, 141
log for installation of modules, 136, 184
log types, 208, 209–210
Site Log

number of days to truncate to, 127
report types for, 107–108
storage options for, setting, 123

upgrade logs, viewing, 116
viewing logs in Log Viewer, 109–111, 131–133

logging in
procedure for, 66–67
security and, 202
user lockout for failed attempts, 114

Logging Provider
classes in, list of, 208–209
EventLogController class, 209–214
ExceptionLogController class, 214–216

LoggingProvider class, 209
[LOGIN] object, 338, 344, 367
login page, 61, 79
LogInfo class, 209
LogInfoArray class, 209
LoginTabId property, PortalSettings, 397
logo for web site, choosing, 73–74
[LOGO] object, 338, 345, 367
LogoffText attribute, [LOGIN], 344
LogoFile property, PortalSettings, 396
LogProperties class, 209
LogTypeConfigInfo class, 209
LogTypeInfo class, 209
Lucarino, John (developer), 4

M
“magical software” (Gates, Bill), 19
Manifest document, DotNetNuke, 14

411

Manifest document, DotNetNuke

In
de

x

22_595636 bindex.qxd 5/10/05 10:06 PM Page 411

manifest file
for container, 349
for module

control elements in, 357–358
definition of, 354–355
example of, 358–360
file elements in, 358
folder elements in, 355–356
module elements in, 357

for providers, 369–370
for skin objects, 368

Masanas, Vicenç
CodeSmith Templates for DotNetNuke 3.0, 388
InfoMap, 390
PagePrint object, 390
Reviews, 390
SimpleDownload, 390
TemplatePrint object, 390

maxThreads setting, web.config file, 143
McCulloch, Scott (Core Team)

contributions of, 19
Private Messages for DotNetNuke 3.0, 390

Membership Services, 85–86
Membership token, e-mail templates, 98
Membership/Role Provider, 202–205
[MENU] object, 367
menualignment attribute, [SOLPARTMENU], 344
menuarrowcssclass attribute,

[SOLPARTMENU], 341
menubarcssclass attribute,

[SOLPARTMENU], 341
menubarheight attribute, [SOLPARTMENU], 340
menuborderwidth attribute,

[SOLPARTMENU], 340
menubreakcssclass attribute,

[SOLPARTMENU], 341
menucontainercssclass attribute,

[SOLPARTMENU], 341
Menueffectsmenutransition attribute,

[SOLPARTMENU], 341
menueffectsmenutransitionlength attribute,

[SOLPARTMENU], 341
menueffectsmouseouthidedelay attribute,

[SOLPARTMENU], 340
menueffectsmouseoverdisplay attribute,

[SOLPARTMENU], 340
menueffectsmouseoverexpand attribute,

[SOLPARTMENU], 340

Menueffectsshadowcolor attribute,
[SOLPARTMENU], 340

Menueffectsshadowdirection attribute,
[SOLPARTMENU], 341

Menueffectsshadowstrength attribute,
[SOLPARTMENU], 341

menueffectsstyle attribute, [SOLPARTMENU], 340
menuiconcssclass attribute,

[SOLPARTMENU], 341
menuitemcssclass attribute,

[SOLPARTMENU], 341
menuitemheight attribute, [SOLPARTMENU], 340
menuitemselcssclass attribute,

[SOLPARTMENU], 341
menurootarrowcssclass attribute,

[SOLPARTMENU], 341
Microsoft

interest in IBuySpy Workshop, 9–10
sponsoring DotNetNuke, 17–18

Microsoft Application Blocks, 281
Microsoft Data Access Application Block, 199
Microsoft FXCop, 388
Microsoft Internet Information Server, 31
Microsoft .NET Runtime, 31
Microsoft PDC (Professional Developers

Conference), 2003, 19
Microsoft SQL Server, 30, 31
Microsoft URLScan filter, 393
minimize/maximize, for modules, 178, 182–183
modularity, 18–19
Module Action API

classes in, 242–243
methods in, 244
properties in, 243–244

module add-ons
definition of, 354
file types for, 360–361
FTP-based installation of, 364
installing, 362–365
module manifest file for, 354–360
packages for, 360–361
resource files for, 361
third-party modules, 260, 389–390
web-based installation of, 362–364

module containers
for administrator pages, 77
applying to web site, 91
architecture of, 154

412

manifest file

22_595636 bindex.qxd 5/10/05 10:06 PM Page 412

default
for host, choosing, 118
for pages, 88
for portal, choosing, 71–72

definition of, 59–60, 154
for host, uploading, 118
manifest file for, 349
for module, 159
in Presentation layer, 196
for skins, 348–352
uploading, permissions for, 124, 130–131

Module Definitions page, 133–134, 183–184,
265–270

module elements, module manifest file, 357
module interfaces

definition of, 240–241
IActionable interface, 241–250, 304–305
IPortable interface, 251–253, 296–297,

304–305
ISearchable interface, 254–257, 295–296,

304–305
IUpgradable interface, 253–254
list of, 241

Module Settings page, 59
module user controls, 196
ModuleAction class

definition of, 242
methods for, 244
properties for, 243–244

ModuleActionCollection class, 242, 246
ModuleActionEventListener class, 243
ModuleActionType class, 242, 245
ModuleLoadException class, 217
modules. See also development of modules;

HTTP modules
adding definitions to, 135
adding to page, 155–160, 176–177
alignment of, 158
architecture of, 151–154
border for, 158
caching of, 159
color of, 158
container for, 159
definition of, 60, 153–154
definitions in, 133–135
deleting, 108, 182
displaying on all pages, 157, 181
DotNetNuke interface to, 265–270
drag and drop feature of, 178, 179

duplicate, in templates, handling, 69
end date for, 157, 181
exporting content to a file, 180
exporting modules within portal, 251–253
footer for, 157, 181
header for, 157, 181
help for, 180
Hover menu for, 178, 179–182
icon for, 158
importing content from another portal, 180
importing modules within portal, 251–253
installing new modules, 135–137, 183–185
Inter-Module Communication (IMC), 253–254
list of, 61–64
log for installation of, 136, 184
minimize/maximize feature of, 178, 182–183
moving, 182
permissions for, 157, 181
planning development of, 259–261
premium, limited to specific portals, 127, 133
premium modules, 127, 133
printing, 159, 181
settings for, 157–159
start date for, 157, 181
syndication of, enabling, 159, 180
third-party modules, 260, 389–390
title for, 157, 159, 181
visibility of, 159, 177
Visual Studio .NET project for, 262–265
XML format of, exposing, 159

ModuleSettingsBase class, 314–315
mouseouthidedelay attribute,

[SOLPARTMENU], 340
moveable attribute, [SOLPARTMENU], 340
Multi Page Content (BonoSoft), 389
“Multiple controls with the same ID” error, 392
multi-portal (site virtualization) feature,

IBuySpy Portal, 4
multithreaded scheduler, 25

N
name of web site, choosing, 72
Nandi, Shawn (Microsoft), 28
NavigateURL function, 328–329
navigation URLs, helper functions for, 328–329
Navigator (Speerio, Inc.), 389
.NET CLR, version of, determining, 117
.NET Framework, version of, determining, 117

413

.NET Framework

In
de

x

22_595636 bindex.qxd 5/10/05 10:06 PM Page 413

.NET Nuke. See DotNetNuke (DNN)

.NET Runtime (Microsoft), 31
Newkirk, James W. (Nunit), 387
News Feeds (RSS) module, 62, 172–173
newsletters, 106–107
NewsWire (Speerio, Inc.), 389
Nimo Software, DnnBB, 389
“Not associated with a trusted SQL Server

connection” error, 392
“nuke” slogan, 11
Nunit (Newkirk, Two, Vorontsov, Craig, Poole),

387

O
Object Dependencies, Scheduler, 141
{objectQualifier} tag, 200
Open Source Initiative (OSI), licensing and, 12
open source projects

DotNetNuke as, 1, 28
individual’s impact on, 14, 24
resources for, 24
source code access, 24–25
upgrades and, 7

OSI (Open Source Initiative), licensing and, 12

P
PA (Private Assembly). See module add-ons
packages, 335–336
Page Functions menu, 57
Page Management, Site Settings page, 78–80
PageLoadException class, 217
PagePrint object (Vicenç Masanas), 390
pages

adding modules to, 176–177
architecture of, 153
creating, 87–89
default container for, 88
definition of, 57–58, 87, 153
deleting, 108
description of, 87
disabled, 88
end date for, 88
hidden from menu, 88
Home Page, 79
icon for, 88
keywords for, 87
Login Page, 79

managing, 176–178
name of, 87
navigational structure for, 90
parent page for, 87, 90
permissions required to view or edit, 87, 89
popularity of, 108
recycling (restoring), 109
skin for, 88
Splash Page, 79
start date for, 88
target of, changing, 89
title of, 87
for Unauthenticated Users, 89–90
User Page, 79

Pane Level skinning, 349
panes, 58–59. See also skin
parent page, 87
parent portals, 56, 128–129
Password property, UserMembership, 398
Payment, Host Settings page, 119–121
Payment, Site Settings page, 80–81
PaymentProcessor property, HostSettings, 396
payments

Host settings for, 119–121
Site settings for, 80–81

PayPal support, 80, 85
PDC (Professional Developers Conference),

2003, 19
performance settings, 124–125
PerformanceSetting property, HostSettings, 396
permissions

file
of host, 31
insufficient file permissions, 48–49
settings for, 38–39

folder permissions, 92–93, 391
for modules, 157, 181
for uploading containers or skins, 124, 130–131
for viewing or editing pages, 87, 89

Personalization HTTP module, 240
personalization, in Business Logic layer, 197
PhoneGenie (Inspector IT), 389
PhotoViewer (Speerio, Inc.), 389
.png filename extension, 335, 371
Poole, Charlie (Nunit), 387
portal. See also containers; pages; panes

aliases for, 127, 392
architecture of, 152
body background for, 76

414

.NET Nuke

22_595636 bindex.qxd 5/10/05 10:06 PM Page 414

child portals, 56, 128–129
contact information on, 61, 163
container for, 76
copyright for, 81, 82
creating, 39–44, 128
default, setting, 117
definition of, 55–56, 151–152
description of, 73
disk space limit, 120, 121, 127
expiry date for, 127
Host settings for, 126–127
hosting fee, 120, 127
keywords for, 73
language, default for, 82, 95, 392
links in, 62, 171–172
list of, displaying, 126
locale for, 144–147, 222
logging in, 66–67, 114, 202
logo for, 73–74
name of, 72
page management for, 78–80
parent portals, 56, 128–129
payment options, 80–81, 119–121
templates for, 129–130
time zone for, 82
title for, 72

Portal Administrator
choosing, 81
Control Panel used by, 123
definition of, 65–66

Portal Module, 56
<portal> node, installation template, 53
Portal token, e-mail templates, 98
PortalId property, PortalSettings, 396
PortalID property, UserInfo, 398
PortalModuleBase class, 302–304
PortalName property, PortalSettings, 396
Portals page, 126
PortalSettings properties, 396–397
PostCode property, UserProfile, 399
PostRequestHandlerExecute event, HTTP

modules, 235
PreferredLocale property, UserProfile, 399
premium modules, 127, 133
PreRequestHandlerExecute event, HTTP

modules, 234
PreSendRequestContent event, HTTP

modules, 235

PreSendRequestHeaders event, HTTP
modules, 235

Presentation layer, 195, 196–197
Preview button, Control Panel, 75
Preview function, Page Functions menu, 57
Preview link, Site Settings page, 76
printing of modules, enabling, 159, 181
[PRINTMODULE] object, 350, 351, 365
[PRIVACY] object, 338, 345, 367
Privacy Statement, 100
Private Assembly (PA). See module add-ons
Private Members region, Edit control, 323
Private Messages for DotNetNuke 3.0 (Scott

McCulloch), 390
Private Methods region, View control, 306–309
private registration, 78
ProcessModuleLoadException() method,

Exceptions class, 217–219, 327–328
ProcessPageLoadException() method, Exceptions

class, 219–220
ProcessSchedulerException() method,

Exceptions class, 221
Professional Developers Conference (PDC),

2003, 19
Profile token, e-mail templates, 98
provider add-ons, 369–370
Provider Model, 188–190
Proxy, Host Settings page, 121
ProxyPort property, HostSettings, 396
ProxyServer property, HostSettings, 396
Public Methods region, View control, 309–310
public registration, 78
Public roles, 84, 85–86
PurgeLogBuffer class, 209

Q
question mark images (field level help), 58

R
Recycle Bin, 108–109
Red-Gate

ANTS Load, 388
ANTS Profiler, 388
SQL Compare, 387
SQL Data Compare, 388

Reflector for .NET (Lutz Roeder), 387
Region property, UserProfile, 399

415

Region property, UserProfile

In
de

x

22_595636 bindex.qxd 5/10/05 10:06 PM Page 415

Registered Users role, 83
RegisteredRoleId property, PortalSettings, 397
RegisteredRoleName property,

PortalSettings, 397
registration, types of, 77–78
ReleaseRequestState event, HTTP modules, 235
reports, 107–108
ResolveRequestCache event, HTTP modules, 234
resource files, localization

creating, 95–100
format of, 222–224
verifying, 145–146

resource keys, 222
resources, development, 261
.resources filename extension, 129
.resx filename extension, 95, 361
RESX format, 222
Retain Schedule History, Scheduler, 140
Retry Frequency, Scheduler, 140
Reviews (Vicenç Masanas), 390
Rich Site Summary (RSS) format, 62, 172–173
rightarrow attribute, [SOLPARTMENU], 342
rightseparator attribute, [SOLPARTMENU], 343
Rightseparatoractive attribute,

[SOLPARTMENU], 343
rightseparatorbreadcrumb attribute,

[SOLPARTMENU], 344
rightseparatorbreadcrumbcssclass attribute,

[SOLPARTMENU], 344
rightseparatorcssclass attribute,

[SOLPARTMENU], 344
Roeder, Lutz (Reflector for .NET), 387
Role Provider, 202–205
roles. See user roles
Rootbreadcrumbarrow attribute,

[SOLPARTMENU], 342
RootLevel attribute, [BREADCRUMB], 344
rootmenuitemactivecssclass attribute,

[SOLPARTMENU], 342
rootmenuitembreadcrumbcssclass attribute,

[SOLPARTMENU], 342
Rootmenuitemcssclass attribute,

[SOLPARTMENU], 342
Rootmenuitemlefthtml attribute,

[SOLPARTMENU], 343
rootmenuitemrighthtml attribute,

[SOLPARTMENU], 343
rootmenuitemselectedcssclass attribute,

[SOLPARTMENU], 343

rootonly attribute, [SOLPARTMENU], 342
RSS (News Feeds) module, 62, 172–173
Run on Event, Scheduler, 141

S
Santry, Patrick (Core Team), 25, 26
Schedule Enabled, Scheduler, 140
Schedule History page, 141
Schedule page, 139
Schedule Status page, 142
scheduled tasks. See Scheduler
SchedulePollingRate property, HostSettings, 396
Scheduler

ASP.NET worker process required for, 143
creating scheduled tasks, 230–231
debugging schedule items, 143
default settings for, 139
editing schedule items, 140–141
history of development of, 25
history of log results, 141
logging exceptions for scheduled tasks, 221
search engine task in, 148
settings for, 125
status of schedule items, 142
web.config file settings for, 143

SchedulerException class, 217
SchedulerMode property, HostSettings, 396
<schemascript> node, installation

template, 52
Scooter Software, Beyond Compare, 387
scripts

client-side, 196
installation scripts, 199
SQL Server-specific scripts, 49–50
syntax for (SQL), 200–201
upgrade scripts, 200

Search Admin page, 147–148
search API. See ISearchable interface
Search Input module, 63
[SEARCH] object, 367
Search Results module, 63
SearchDataStoreProvider, 255
searching. See also ISearchable interface

in Business Logic layer, 198
configuring search engine, 147–148
indexing content of Text/HTML module, 173
search engine task in Scheduler, 148

SearchItemInfo class, 256–257

416

Registered Users role

22_595636 bindex.qxd 5/10/05 10:06 PM Page 416

Section Head control, 317
security

for ASP.NET 2.0, 201–202
in Business Logic layer, 198
deleting default host account, 114
login features for, 202
registration settings, 77–78
security hole in version 1.0, 20–21
user controls for, 202
user management of applications, 202
in version 3.0 of DotNetNuke, 202–205

Security Roles page
creating new roles, 84–85
definition of, 83
roles, list of, 83–84

Security, Site Settings page, 77–78
selectedbordercolor attribute,

[SOLPARTMENU], 340
selectedcolor attribute, [SOLPARTMENU], 340
selectedforecolor attribute,

[SOLPARTMENU], 340
SendLogNotifications class, 209
separatecss attribute, [SOLPARTMENU], 339
Separator attribute

[BREADCRUMB], 344
[LINKS], 345

separator attribute, [SOLPARTMENU], 343
separatorcssclass attribute,

[SOLPARTMENU], 343
Settings control, 264, 301, 313–316
Settings function, Page Functions menu, 57
Settings hash, 312
<settings> node, installation template, 53
[SIGNIN] object, 338, 345, 366
Signup page, 128
SimpleDownload (Vicenç Masanas), 390
Site Configuration, Host Settings page, 116–117
Site Log

number of days to truncate to, 127
report types for, 107–108
storage options for, setting, 123

Site Log Storage, Host Settings page, 123
Site Settings page

accessing, 75
Administrator, choosing, 81
Appearance settings, 76–77
Banner Advertising setting, 81
Copyright setting, 81, 82
Default Language setting, 82

Page Management settings, 78–80
Payment settings, 80–81
Portal Time Zone setting, 82
Security settings, 77–78
Stylesheet Editor, restoring default style

sheet, 82–83
site virtualization (multi-portal) feature, IBuySpy

Portal, 4
Site Wizard

default container, choosing, 71–72
default skin, choosing, 70–71
definition of, 68
description of web site, choosing, 73
keywords for web site, choosing, 73
logo for web site, choosing, 73–74
name/title of web site, choosing, 72
template, applying, 68–70

SiteLogBuffer property, HostSettings, 396
SiteLogHistory property

HostSettings, 396
PortalSettings, 397

SiteLogStorage property, HostSettings, 396
SiteMap (Speerio, Inc.), 389
skin. See also panes

for administrator pages, 77, 118
applying to web site, 91
cascading style sheet for, 347–348
compressing for deployment, 348, 371
container for, 348–352
creating

attributes for, 339–345
examples of, 345–347
methods for, 336–337
objects for, 338–339

default
for host, choosing, 118
for portal, choosing, 70–71
restoring, 91

definition of, 331–332
file format for, 331–332, 335–336
file organization for, 332, 336–337
for host, uploading, 118
image files for, 337, 348
for pages, 88
Pane Level skinning, 349
in Presentation layer, 196
processing of, 332–335
support files for, 337
uploading, permissions for, 124, 130–131

417

skin

In
de

x

22_595636 bindex.qxd 5/10/05 10:07 PM Page 417

skin add-ons
configuration file, 372–374
file types, 370–371
installing, 374–377
packaging, 370–372

Skin control, 317
skin object add-ons

list of, 365–367
manifest file for, 368

skin package, 335–336
Skin Thumbnail control, 317
skinning add-ons

containers, packaging and installing, 378
skins

configuration file for, 372–374
file types for, 370–371
installing, 374–377
packaging, 370–372

Skins page, 91–92
SkinUpload property, HostSettings, 396
skin.vb file, 333–335
Slalom Services, Enhanced Feedback, 389
Smith, Eric J. (CodeSmith), 388
SMTP Server, Host Settings page, 122
SMTPAuthentication property, HostSettings, 396
SMTPServer property, HostSettings, 396
SMTPUsername property, HostSettings, 396
SnagIt (TechSmith), 388
software. See add-ons; developer tools
software requirements, 31
SolPartActions control, 348
[SOLPARTACTIONS] object, 350, 366
[SOLPARTMENU] object, 338, 339–344, 367
source code access, 24–25
source control system, 15
SourceGear Vault (Araxis LTD), 388
Speerio, Inc.

Das Blog for DNN, 389
Navigator, 389
NewsWire, 389
PhotoViewer, 389
SiteMap, 389

Splash Page, choosing, 79
SplashTabId property, PortalSettings, 397
SQL Compare (Red-Gate), 387
SQL Data Compare (Red-Gate), 388
SQL page, 138–139
SQL Server (Microsoft), 30, 31
SQL Server Security, 34

SQL Server-specific scripts, 49–50
SQL syntax for scripts, 200–201
SQLDataProvider class, 280–285
SQLView (DNN Stuff), 389
Stallman, Richard (GPL), 13
start date, for modules, 157
stored procedures, for Events module, 276–280,

284–285
Street property, UserProfile, 398
style sheet

for containers, 378
for news feeds, 62, 172–173
for skins, 196–197, 335, 347–348, 372
XML/XSL module, 63

Stylesheet Editor, 82–83
submenubreadcrumbarrow attribute,

[SOLPARTMENU], 342
submenucssclass attribute,

[SOLPARTMENU], 341
submenuitemactivecssclass attribute,

[SOLPARTMENU], 342
submenuitembreadcrumbcssclass attribute,

[SOLPARTMENU], 342
Submenuitemlefthtml attribute,

[SOLPARTMENU], 343
Submenuitemrighthtml attribute,

[SOLPARTMENU], 343
submenuitemselectedcssclass attribute,

[SOLPARTMENU], 343
subscription service, IBuySpy Workshop, 8–9
SuperTabId property, PortalSettings, 397
SuperUser account, 114, 115. See also Host
<superuser> node, installation template, 52
SuperUsers Accounts page, 115
Survey module, 63
syndication of modules, enabling, 159, 180
system locale, 222

T
tables

custom, 63, 174–175
for Events module, 274–275

tabs, 57. See also pages
technologies used by DotNetNuke, 187–188
TechSmith, SnagIt, 388
Telephone property, UserProfile, 399
.template filename extension, 129

418

skin add-ons

22_595636 bindex.qxd 5/10/05 10:07 PM Page 418

TemplatePrint object (Vicenç Masanas), 390
Template.resx file, 222
templates

applying to web site, 68–70
duplicate modules in, handling, 69
installation templates, 51–53
for portals, 129–130

[TERMS] object, 338, 345, 367
Terms of Use, 100
Text attribute

[LOGIN], 344
[TERMS], 345
[USER], 345

Text Editor control, 317, 320
.Text filename extension, 222
Text/HTML module, 63, 173–174
third-party modules, 260, 389–390
Time Lapse, Scheduler, 140
time zone

for locales, 146–147, 224, 381
for portal, 82

TimeZone property, UserProfile, 399
TimeZoneOffset property, PortalSettings, 397
TimeZones file, 381
title

for Announcements module, 160
for Host, setting, 117
for modules, 157, 159
for web site, choosing, 72

[TITLE] object, 350, 366
tooltip attribute, [SOLPARTMENU], 343
trademark for DotNetNuke, 17
translations

performing, 224–229
resource files containing, 222–224

[TREEVIEW] object, 367
troubleshooting

“Access to the path ...portal.css” error, 392
“Could not connect to database specified”

error, 392
debugging schedule items, 143
“Error while trying to run project: Unable to start

debugging...” error, 393
Indexing Service, causing ASP.NET errors, 391
installation problems, 48–49, 116
insufficient file permissions, 48–49
invalid connection string, 48
“Multiple controls with the same ID” error, 392

“Not associated with a trusted SQL Server
connection” error, 392

URLScan filter, problems with, 393
Windows services interfering with

DotNetNuke, 391
Two, Michael C. (Nunit), 387

U
Unauthenticated Users role, 84, 89–90
Unit property, UserProfile, 399
UpdateEvent stored procedure, Events module,

279–280
UpdateRequestCache event, HTTP modules, 235
upgrade logs, viewing, 116
upgrade scripts, in Data layer, 200
upgrading DotNetNuke, 51, 253
URL control, 317
URL Rewriter HTTP module, 236–239
URL Tracking control, 317
URLs. See also web sites

friendly, providing, 236–239
FriendlyUrl Provider, enabling, 125
for Host, setting, 117
for parent and child portals, 128

URLScan filter (Microsoft), 393
usearrows attribute, [SOLPARTMENU], 342
UseCustomErrorMessages property,

HostSettings, 396
UseFriendlyUrls property, HostSettings, 396
User Accounts module, 63
User Accounts page, 100–101
user controls

definition of, 202
Edit control

code regions, 321–323
code-behind class, 321
definition of, 264, 301
EditEvents control, 316–321
Event Handlers region, 323–327
Private Members region, 323
user controls, list of, 316–317

in Events module, list of, 300–301
syntax errors in, 392
View control

Calendar control, 302
code-behind class, 302–304
code-behind regions, 306
DataList control, 301–302

419

user controls

In
de

x

22_595636 bindex.qxd 5/10/05 10:07 PM Page 419

user controls (continued)
View control (continued)

definition of, 264, 300
Event Handlers region, 310–313
optional interfaces, 304–305
Private Methods region, 306–309
Public Methods region, 309–310

User Defined Table module, 63, 174–175
user management of applications, 202
[USER] object, 338, 345, 367
User Page, 79
user roles. See also Host; Portal Administrator

Administrator role
folder permissions for, 92
page viewing and editing permissions for, 89
for Portal Administrator, 65, 81
predefined in Security Roles page, 83

assigning users to, 86
creating, 84–85
data model for, 203–205
definition of, 64, 83
DNNMembership HTTP module, 240
list of, 83–84
managing, 101
Membership Services for, 85–86
Public roles, 84, 85–86
Registered Users role, 83
service fees for, 80–81, 85

user selected locale, 222
User token, e-mail templates, 98
UserID property, UserInfo, 398
UserInfo properties, 398
UserMembership properties, 398
Username property

UserInfo, 398
UserMembership, 398

userootbreadcrumbarrow attribute,
[SOLPARTMENU], 342

UserProfile properties, 398–399
UserRegistration property, PortalSettings, 397
users

assigning to roles, 86
changing name of, 101
data model for, 203–205
database access for, 34–37
feedback from, 62, 169
finding, 100
information required for registration, 80

managing accounts for, 100–101
unauthorized, finding, 101

Users Online HTTP module, 239–240
User’s Online module, 63
UsersOnline

definition of, 63, 239–240
disabling, 124, 240
tracking time for, setting, 124

UsersOnlineTime property, HostSettings, 396
UserTabId property, PortalSettings, 397
useskinpatharrowimages attribute,

[SOLPARTMENU], 342
usesubmenubreadcrumbarrow attribute,

[SOLPARTMENU], 342

V
Veenstra, Geert (Core Team), 19
Vendor List page, 103, 138
vendors

as affiliates, 105–106
banner advertising for, 103–105, 161–163
creating, 103

verified registration, 78
<version> node, installation template, 52
version of DotNetNuke

determining, 116
supporting multiple, 260
in title bar, 118

Version property, PortalSettings, 397
version 1.0 release of DotNetNuke, 18
version 2.0 release of DotNetNuke, 21–22
version 3.0 release of DotNetNuke, 27
View control

Calendar control, 302
code-behind class, 302–304
code-behind regions, 306
DataList control, 301–302
definition of, 264, 300
Event Handlers region, 310–313
optional interfaces, 304–305
Private Methods region, 306–309
Public Methods region, 309–310

Virtual Directory, IIS, 40–43
virtual directory, installation, 30
[VISIBILITY] object, 350, 351, 366
visibility, of modules, 159
visitors, number of. See UsersOnline
Visual SourceSafe (VSS), 15

420

user controls

22_595636 bindex.qxd 5/10/05 10:07 PM Page 420

Visual Studio .NET project
classes, creating, 265
configuring, 262–265
controls, adding, 264–265
creating, 262–263

Vogt, Anson (designer), 22
Vorontsov, Alexei A. (Nunit), 387
VSS (Visual SourceSafe), 15

W
web application portal. See portal
web forms, 196
Web Hosters, 27–28
web server, architecture of, 195
Web Server software, 31
web site (portal). See portal
web sites

ANTS Load (Red-Gate), 388
ANTS Profiler (Red-Gate), 388
Araxis Merge (Araxis LTD), 388
ASP.NET Enterprise Manager, 32
Beyond Compare (Scooter Software), 387
CodeSmith (Eric J. Smith), 388
CodeSmith Templates for DotNetNuke 3.0

(Vicenç Masanas), 388
CSSInclude (DNN Stuff), 389
Das Blog for DNN (Speerio, Inc.), 389
displaying content from another web site, 62,

169–170
DnnBB (BonoSoft and Nimo Software), 389
DotNetNuke (DNN), 22–28
Draco.NET (Chive Software Limited), 388
Enhanced Feedback (Slalom Services), 389
FileZilla (Tim Kosse), 388
FXCop (Microsoft), 388
GotDotNet (WorkSpaces service), 15
InfoMap (Vicenç Masanas), 390
Multi Page Content (BonoSoft), 389
Navigator (Speerio, Inc.), 389
NewsWire (Speerio, Inc.), 389
Nunit (Newkirk, Two, Vorontsov, Craig, Poole), 387
PagePrint object (Vicenç Masanas), 390
PhoneGenie (Inspector IT), 389
PhotoViewer (Speerio, Inc.), 389
Private Messages for DotNetNuke 3.0 (Scott

McCulloch), 390
Reflector for .NET (Lutz Roeder), 387
Reviews (Vicenç Masanas), 390

SimpleDownload (Vicenç Masanas), 390
SiteMap (Speerio, Inc.), 389
SnagIt (TechSmith), 388
SourceGear Vault (Araxis LTD), 388
SQL Compare (Red-Gate), 387
SQL Data Compare (Red-Gate), 388
SQLView (DNN Stuff), 389
TemplatePrint object (Vicenç Masanas), 390
WinZip, 32

web-based installation
of language add-ons, 383–385
of module add-ons, 362–364
of skinning add-ons, 374–377

web.config file
database connection string in, 44–45, 392
default data provider in, 282
Provider Model API settings in, 190
Scheduler settings in, 143

Website property, UserProfile, 399
Whidbey APIs, 26
Willhite, Scott (Core Team), 15, 26
Windows account used to run DotNetNuke, 117
Windows Security, creating database user, 34
Windows services, interfering with

DotNetNuke, 391
WinZip, 32
worker process, ASP.NET, 143
WorkSpaces service, GotDotNet web site, 15

X
.xml filename extension, 371
XML format of modules, enabling, 159
XML/XSL module, 63, 175–176
XXL fork, DotNetNuke, 16–17

Z
ZIP files (.zip filename extension)

decompressing on upload, 94
for module add-ons, 360, 361
packaging skins and containers in, 348, 371
for skins, 348, 371
Index 595636/Professional Dot Net Nuke

ASP.NET Portals

421

ZIP files

In
de

x

22_595636 bindex.qxd 5/10/05 10:07 PM Page 421

	Professional DotNetNuke ASP.Net Portals
	Cover

	Table Of Contents
	Preface
	Chapter 1: An Inside Look at the Evolution of DotNetNuke
	IBuySpy Portal
	ASP.NET
	IBuySpy Portal Forum
	IBuySpy Workshop
	DotNetNuke (DNN) Web Site

	Chapter 2: Installing DotNetNuke
	Preparation
	Objectives
	Hardware Prerequisites
	Software Prerequisites
	Hosting Prerequisites

	Implementation
	Downloading DotNetNuke
	Extracting the Installation File
	Creating the Database
	Creating the Database User
	Setting Permissions
	Creating the Web Site
	Configuring .NET Nuke
	Testing the Installation
	Common Installation Issues

	Explanation
	Scenario 1: The Clean Install
	Scenario 2: The Upgrade

	Installation Templates
	Summary

	Chapter 3: Portal Overview
	What Is a Portal?
	Portal Organizational Elements
	Parent/Child Portals
	Pages
	Panes
	Containers

	Modules
	Account Login
	Announcements
	Banners
	Contacts
	Discussions
	Documents
	Events
	FAQ
	Feedback
	IFrame
	Image
	Links
	News Feeds (RSS)
	Search Input
	Search Results
	Text/HTML
	User Accounts
	User Defined Table
	XML/XSL
	Additional Modules

	User Roles
	Summary

	Chapter 4: Portal Administration
	Who Is the Portal Administrator?
	Where Do I Begin?
	The Control Panel
	The Site Wizard
	The Help Button
	The Preview Button

	Configuring Your Portal
	Site Settings
	Security Roles
	Pages
	Skins
	File Manager
	Languages

	Maintaining Your Portal
	User Accounts
	Vendors
	Newsletters
	Site Log
	Recycle Bin
	Log Viewer

	Summary

	Chapter 5: Host Administration
	Who Is the Host?
	Where Do I Begin?
	SuperUsers Accounts

	Configuring Your Installation
	Host Settings

	Managing Portals as Host
	Portals
	Skins
	Log Viewer

	Other Host Tools
	Module Definitions
	File Manager
	Vendors
	SQL
	Schedule
	Languages
	Search Admin
	Lists
	Skins
	Summary

	Chapter 6: Modules
	Module Architecture
	Portal
	Page
	Module
	Module Container

	Types of Modules
	Announcements Module
	Banner Module
	Contacts Module
	Discussions Module
	Documents Module
	Events Module
	FAQs Module
	Feedback Module
	IFrame Module
	Image Module
	Links Module
	News Feed (RSS)
	HTML/Text Module
	User Defined Table Module
	XML/XSL Module

	Management
	Page Management
	Module Management

	Installation
	Summary

	Chapter 7: DotNetNuke Architecture
	Technologies Used
	Provider Model
	Provider Configuration

	Custom Business Objects
	CBO Hydrator

	Architectural Overview
	Presentation Layer
	Business Logic Layer
	Data Access Layer
	Data Layer

	Security Model
	Security in ASP.NET 2.0
	DotNetNuke and ASP.NET 2.0
	Security in DotNetNuke 3.0

	Namespace Overview
	Summary

	Chapter 8: Core DotNetNuke APIs
	Introduction
	Event Logging
	The API

	Exception Handling
	The Exceptions Class

	Localization
	Locales
	Resource Files
	The API

	Scheduler
	HTTPModules
	HTTP Modules 101
	DotNetNuke HTTP Modules

	Module Interfaces
	IActionable
	IPortable
	IUpgradable
	Inter-Module Communication
	ISearchable

	Summary

	Chapter 9: Beginning Module Development
	Planning Your Module Project
	Ready Your Resources

	Starting Development
	Configuring Your Visual Studio .NET Project
	Configuring DotNetNuke to Interface with Your Module

	Summary

	Chapter 10: Developing Modules: The Database Layer
	Database Design
	Database Structure

	Database Providers
	SQLDataProvider Class

	Data Abstraction
	DataProvider Class

	Summary

	Chapter 11: Developing Modules: Business Logic Layer
	Developing the Business Logic Layer
	Defining the Properties for the Info Class
	Creating Objects Using the Controller Class
	Custom Business Object Help Class
	Optional Interfaces for the Events Module Controller Class

	Summary

	Chapter 12: Developing Modules: The Presentation Layer
	Module User Interfaces
	View Control
	Settings Control
	Edit Control

	DotNetNuke Helper Functions
	Error Handling
	Navigation URLs

	Summary

	Chapter 13: Skinning DotNetNuke
	File Organization
	Processing Pages and Loading Skins
	Packaging Skins and Containers
	Creating Your Skin
	Container Creation

	Summary

	Chapter 14: Distribution
	Code Add-Ons
	Modules
	Module Manifest File
	Packaging Modules
	Resource File
	Installing Modules

	Skin Objects
	Skin Object Manifest File

	Providers
	Provider Manifest File

	Skinning Add-Ons
	Skins
	Packaging Skins
	Skin Configuration Files
	Installing Skins

	Containers
	Packaging Containers
	Installing Containers

	Language Add-Ons
	Language Packs
	Language Pack Manifest File
	Packaging Language Packs
	Installing Language Packs

	Summary

	Appendix A: Resources
	Appendix B: Frequently Asked Questions
	Appendix C: System Message Tokens
	Index
	Team DDU

